This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034305 #39 Jan 15 2023 19:50:12 %S A034305 14,16,18,44,46,48,49,64,66,68,69,81,84,86,88,91,94,96,98,99,122,124, %T A034305 125,126,128,142,144,145,146,148,152,154,155,156,158,162,164,165,166, %U A034305 168,182,184,185,186,188,212,214,215,216,218,221,222,224,225,226,228 %N A034305 Zeroless nonprimes that remain nonprime if any digit is deleted. %H A034305 Reinhard Zumkeller, <a href="/A034305/b034305.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe) %t A034305 npQ[n_]:=!PrimeQ[n]&&FreeQ[IntegerDigits[n],0]&&AllTrue[FromDigits/@ Table[Drop[IntegerDigits[n],{k}],{k,IntegerLength[n]}],!PrimeQ[#]&]; Select[Range[10,300],npQ](* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 19 2021 *) %o A034305 (Haskell) %o A034305 a034305 n = a034305_list !! (n-1) %o A034305 a034305_list = filter f $ drop 9 a052382_list where %o A034305 f x = a010051' x == 0 && %o A034305 (all (== 0) $ map (a010051' . read) $ %o A034305 zipWith (++) (inits $ show x) (tail $ tails $ show x)) %o A034305 -- _Reinhard Zumkeller_, May 10 2015 %o A034305 (PARI) is(n)=my(d=digits(n)); if(#d<2 || vecmin(d)<1 || isprime(n), return(0)); for(i=0,#d-1, if(isprime(fromdigits(vecextract(d,2^#d-1-2^i))), return(0))); 1 \\ _Charles R Greathouse IV_, Jun 25 2017 %o A034305 (Python) %o A034305 from sympy import isprime %o A034305 def ok(n): %o A034305 if n < 10 or isprime(n): return False %o A034305 s = str(n) %o A034305 return "0" not in s and not any(isprime(int(s[:i]+s[i+1:])) for i in range(len(s))) %o A034305 print([k for k in range(229) if ok(k)]) # _Michael S. Branicky_, Jan 15 2023 %Y A034305 Subsequence of A052382. %Y A034305 Cf. A034302, A034303, A034304, A010051. %K A034305 base,nonn,nice %O A034305 1,1 %A A034305 _David W. Wilson_ %E A034305 Definition corrected by _T. D. Noe_, Apr 02 2008 %E A034305 Single-digit terms removed again by _Georg Fischer_, Jun 21 2021