A034359 Number of binary [ n,5 ] codes.
0, 0, 0, 0, 1, 6, 23, 77, 240, 705, 1988, 5468, 14724, 39006, 101818, 261924, 663748, 1655781, 4062110, 9793065, 23186825, 53896597, 122975627, 275449464, 605794093, 1308633243, 2777847319, 5797093774, 11900199553, 24042491094, 47833081481, 93765335118, 181200186060, 345389067067, 649704599010
Offset: 1
Keywords
Links
- H. Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Wnk2: Number of the isometry classes of all binary (n,k)-codes. [See column k=5.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, preprint, 1995. [We have a(n) = W_{n,5,2}; see p. 4 of the preprint.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [We have a(n) = W_{n,5,2}; see p. 197.]
- Petros Hadjicostas, Generating function for a(n).
Crossrefs
Extensions
More terms from Joerg Arndt, Oct 09 2019