A034360 Number of binary [ n,6 ] codes.
0, 0, 0, 0, 0, 1, 7, 32, 131, 516, 1988, 7664, 29765, 117169, 467266, 1880517, 7588675, 30491836, 121191234, 473940269, 1816579108, 6806904522, 24897540538, 88831250408, 309108741706, 1049278764758, 3476233500031, 11246972937210, 35561409388625, 109967835029368, 332834886787933, 986732945823099
Offset: 1
Keywords
Links
- H. Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Wnk2: Number of the isometry classes of all binary (n,k)-codes. [See column k=6.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, preprint, 1995. [We have a(n) = W_{n,6,2}; see p. 4 of the preprint.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [We have a(n) = W_{n,6,2}; see p. 197.]
- Petros Hadjicostas, Generating function for a(n).
Crossrefs
Extensions
More terms from Joerg Arndt, Oct 09 2019