A034415 Second term in extremal weight enumerator of doubly-even binary self-dual code of length 24n.
1, 2576, 535095, 18106704, 369844880, 6101289120, 90184804281, 1251098739072, 16681003659936, 216644275600560, 2763033644875595, 34784314216176096, 433742858109499536, 5369839142579042560
Offset: 0
Keywords
Examples
At length 24, the weight enumerator (of the Golay code) is 1+759*x^8+2576*x^12+..., with leading coefficient 759 and second term 2576.
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..250
- C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Programs
-
Maple
For Maple program see A034414.
Comments