cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

This page as a plain text file.
%I A034444 #305 Jul 02 2025 16:01:56
%S A034444 1,2,2,2,2,4,2,2,2,4,2,4,2,4,4,2,2,4,2,4,4,4,2,4,2,4,2,4,2,8,2,2,4,4,
%T A034444 4,4,2,4,4,4,2,8,2,4,4,4,2,4,2,4,4,4,2,4,4,4,4,4,2,8,2,4,4,2,4,8,2,4,
%U A034444 4,8,2,4,2,4,4,4,4,8,2,4,2,4,2,8,4,4,4,4,2,8,4,4,4,4,4,4,2,4,4,4,2,8,2,4,8
%N A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).
%C A034444 If n = Product p_i^a_i, d = Product p_i^c_i is a unitary divisor of n if each c_i is 0 or a_i.
%C A034444 Also the number of squarefree divisors of n. - _Labos Elemer_
%C A034444 Also number of divisors of the squarefree kernel of n: a(n) = A000005(A007947(n)). - _Reinhard Zumkeller_, Jul 19 2002
%C A034444 Also shadow transform of pronic numbers A002378.
%C A034444 For n >= 1 define an n X n (0,1) matrix A by A[i,j] = 1 if lcm(i,j) = n, A[i,j] = 0 if lcm(i,j) <> n for 1 <= i,j <= n. a(n) is the rank of A. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 11 2003
%C A034444 a(n) is also the number of solutions to x^2 - x == 0 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
%C A034444 a(n) is the number of squarefree divisors of n, but in general the set of unitary divisors of n is not the set of squarefree divisors (compare the rows of A077610 and A206778). - _Jaroslav Krizek_, May 04 2009
%C A034444 Row lengths of the triangles in A077610 and in A206778. - _Reinhard Zumkeller_, Feb 12 2012
%C A034444 a(n) is also the number of distinct residues of k^phi(n) (mod n), k=0..n-1. - _Michel Lagneau_, Nov 15 2012
%C A034444 a(n) is the number of irreducible fractions y/x that satisfy x*y=n (and gcd(x,y)=1), x and y positive integers. - _Luc Rousseau_, Jul 09 2017
%C A034444 a(n) is the number of (x,y) lattice points satisfying both x*y=n and (x,y) is visible from (0,0), x and y positive integers. - _Luc Rousseau_, Jul 10 2017
%C A034444 Conjecture: For any nonnegative integer k and positive integer n, the sum of the k-th powers of the unitary divisors of n is divisible by the sum of the k-th powers of the odd unitary divisors of n (note that this sequence lists the sum of the 0th powers of the unitary divisors of n). - _Ivan N. Ianakiev_, Feb 18 2018
%C A034444 a(n) is the number of one-digit numbers, k, when written in base n such that k and k^2 end in the same digit. - _Matthew Scroggs_, Jun 01 2018
%C A034444 Dirichlet convolution of A271102 and A000005. - _Vaclav Kotesovec_, Apr 08 2019
%C A034444 Conjecture: Let b(i; n), n > 0, be multiplicative sequences for some fixed integer i >= 0 with b(i; p^e) = (Sum_{k=1..i+1} A164652(i, k) * e^(k-1)) * (i+2) / (i!) for prime p and e > 0. Then we have Dirichlet generating functions: Sum_{n > 0} b(i; n) / n^s = (zeta(s))^(i+2) / zeta((i+2) * s). Examples for i=0 this sequence, for i=1 A226602, and for i=2 A286779. - _Werner Schulte_, Feb 17 2022
%C A034444 The smallest integer with 2^m unitary divisors, or equivalently, the smallest integer with 2^m squarefree divisors, is A002110(m). - _Bernard Schott_, Oct 04 2022
%D A034444 R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.
%H A034444 T. D. Noe, <a href="/A034444/b034444.txt">Table of n, a(n) for n = 1..10000</a>
%H A034444 O. Bagdasar, <a href="/A048691/a048691.pdf">On some functions involving the lcm and gcd of integer tuples</a>, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
%H A034444 Masum Billal, <a href="https://arxiv.org/abs/1909.07823">Number of Ways To Write as Product of Co-prime Numbers</a>, arXiv:1909.07823 [math.GM], 2019.
%H A034444 Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004. [Cached copy, with permission of the author]
%H A034444 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 49-50.
%H A034444 Lorenz Halbeisen, <a href="http://www.iam.fmph.uniba.sk/amuc/_vol-74/_no_2/_halbeisen/halbeisen.html">A number-theoretic conjecture and its implication for set theory</a>, Acta Math. Univ. Comenianae 74(2) (2005), 243-254.
%H A034444 Lorenz Halbeisen and Norbert Hungerbuehler, <a href="https://user.math.uzh.ch/halbeisen/publications/pdf/seq.pdf">Number theoretic aspects of a combinatorial function</a>, Notes on Number Theory and Discrete Mathematics 5 (1999), 138-150.
%H A034444 Jon Maiga, <a href="http://jonkagstrom.com/articles/upper_bound_of_fibonacci_entry_points.pdf">Upper bound of Fibonacci entry points</a>, 2019.
%H A034444 OEIS Wiki, <a href="https://oeis.org/wiki/Shadow_transform">Shadow transform</a>.
%H A034444 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%H A034444 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>.
%H A034444 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisorFunction.html">Unitary Divisor Function</a>.
%H A034444 Wikipedia, <a href="http://en.wikipedia.org/wiki/Unitary_divisor">Unitary divisor</a>.
%H A034444 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A034444 a(n) = Sum_{d|n} abs(mu(n)) = 2^(number of different primes dividing n) = 2^A001221(n), with mu(n) = A008683(n). [Added Möbius formula. - _Wolfdieter Lang_, Jan 11 2020]
%F A034444 a(n) = Product_{ primes p|n } (1 + Legendre(1, p)).
%F A034444 Multiplicative with a(p^k)=2 for p prime and k>0. - _Henry Bottomley_, Oct 25 2001
%F A034444 a(n) = Sum_{d|n} tau(d^2)*mu(n/d), Dirichlet convolution of A048691 and A008683. - _Benoit Cloitre_, Oct 03 2002
%F A034444 Dirichlet generating function: zeta(s)^2/zeta(2s). - _Franklin T. Adams-Watters_, Sep 11 2005
%F A034444 Inverse Mobius transform of A008966. - _Franklin T. Adams-Watters_, Sep 11 2005
%F A034444 Asymptotically [Finch] the cumulative sum of a(n) = Sum_{n=1..N} a(n) ~ (6/(Pi^2))*N*log(N) + (6/(Pi^2))*(2*gamma - 1 - (12/(Pi^2))*zeta'(2))*N + O(sqrt(N)). - _Jonathan Vos Post_, May 08 2005 [typo corrected by _Vaclav Kotesovec_, Sep 13 2018]
%F A034444 a(n) = Sum_{d|n} floor(rad(d)/d), where rad is A007947 and floor(rad(n)/n) = A008966(n). - _Enrique Pérez Herrero_, Nov 13 2009
%F A034444 a(n) = A000005(n) - A048105(n); number of nonzero terms in row n of table A225817. - _Reinhard Zumkeller_, Jul 30 2013
%F A034444 G.f.: Sum_{n>0} A008966(n)*x^n/(1-x^n). - _Mircea Merca_, Feb 25 2014
%F A034444 a(n) = Sum_{d|n} lambda(d)*mu(d), where lambda is A008836. - _Enrique Pérez Herrero_, Apr 27 2014
%F A034444 a(n) = A277561(A156552(n)). - _Antti Karttunen_, May 29 2017
%F A034444 a(n) = A005361(n^2)/A005361(n). - _Velin Yanev_, Jul 26 2017
%F A034444 L.g.f.: -log(Product_{k>=1} (1 - mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, Jul 30 2018
%F A034444 a(n) = Sum_{d|n} A001615(d) * A023900(n/d). - _Torlach Rush_, Jan 20 2020
%F A034444 Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = 1. - _Amiram Eldar_, May 29 2020
%F A034444 a(n) = lim_{k->oo} A000005(n^(2*k))/A000005(n^k). - _Velin Yanev_ and _Amiram Eldar_, Jan 10 2025
%e A034444 a(12) = 4 because the four unitary divisors of 12 are 1, 3, 4, 12, and also because the four squarefree divisors of 12 are 1, 2, 3, 6.
%p A034444 with(numtheory): for n from 1 to 200 do printf(`%d,`,2^nops(ifactors(n)[2])) od:
%p A034444 with(numtheory);
%p A034444 # returns the number of unitary divisors of n and a list of them
%p A034444 f:=proc(n)
%p A034444 local ct,i,t1,ans;
%p A034444 ct:=0; ans:=[];
%p A034444 t1:=divisors(n);
%p A034444 for i from 1 to nops(t1) do
%p A034444 d:=t1[i];
%p A034444 if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi;
%p A034444 od:
%p A034444 RETURN([ct,ans]);
%p A034444 end;
%p A034444 # _N. J. A. Sloane_, May 01 2013
%p A034444 # alternative Maple program:
%p A034444 a:= n-> 2^nops(ifactors(n)[2]):
%p A034444 seq(a(n), n=1..105);  # _Alois P. Heinz_, Jan 23 2024
%p A034444 a := n -> 2^NumberTheory:-NumberOfPrimeFactors(n, distinct):  # _Peter Luschny_, May 13 2025
%t A034444 a[n_] := Count[Divisors[n], d_ /; GCD[d, n/d] == 1]; a /@ Range[105] (* _Jean-François Alcover_, Apr 05 2011 *)
%t A034444 Table[2^PrimeNu[n],{n,110}] (* _Harvey P. Dale_, Jul 14 2011 *)
%o A034444 (PARI) a(n)=1<<omega(n) \\ _Charles R Greathouse IV_, Feb 11 2011
%o A034444 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X))[n], ", ")) \\ _Vaclav Kotesovec_, Sep 26 2020
%o A034444 (Haskell)
%o A034444 a034444 = length . a077610_row  -- _Reinhard Zumkeller_, Feb 12 2012
%o A034444 (Python)
%o A034444 from sympy import divisors, gcd
%o A034444 def a(n):
%o A034444     return sum(1 for d in divisors(n) if gcd(d, n//d)==1)
%o A034444 # _Indranil Ghosh_, Apr 16 2017
%o A034444 (Python)
%o A034444 from sympy import primefactors
%o A034444 def a(n): return 2**len(primefactors(n))
%o A034444 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Apr 16 2017
%o A034444 (Scheme) (define (A034444 n) (if (= 1 n) n (* 2 (A034444 (A028234 n))))) ;; _Antti Karttunen_, May 29 2017
%o A034444 (Magma) [#[d:d in Divisors(n)|Gcd(d,n div d) eq 1]:n in [1..110]]; // _Marius A. Burtea_, Jan 11 2020
%o A034444 (Magma) [&+[Abs(MoebiusMu(d)):d in Divisors(n)]:n in [1..110]]; // _Marius A. Burtea_, Jan 11 2020
%Y A034444 Cf. A077610, A048105, A000173, A013928, A000079, A001221, A002110, A034448, A047994, A061142, A277561.
%Y A034444 Sum of the k-th powers of the squarefree divisors of n for k=0..10: this sequence (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%Y A034444 Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: this sequence (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).
%Y A034444 Cf. A020821 (Dgf at s=2), A177057 (Dgf at s=4).
%K A034444 nonn,nice,easy,mult
%O A034444 1,2
%A A034444 _N. J. A. Sloane_
%E A034444 More terms from _James Sellers_, Jun 20 2000