cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034597 Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.

This page as a plain text file.
%I A034597 #23 Jul 08 2025 21:19:28
%S A034597 1,196560,52416000,6218175600,565866362880,45792819072000,
%T A034597 3486157968384000,256206274225902000,18422726047165440000,
%U A034597 1305984407917646096640,91692325887531393024000
%N A034597 Leading coefficient of extremal theta series of even unimodular lattice in dimension 24n.
%D A034597 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
%H A034597 N. J. A. Sloane, <a href="/A034597/b034597.txt">Table of n, a(n) for n = 0..100</a>
%H A034597 C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, <a href="https://doi.org/10.1016/0021-8693(75)90155-6">Upper bounds for modular forms, lattices and codes</a>, J. Alg., 36 (1975), 68-76.
%H A034597 C. L. Mallows and N. J. A. Sloane, <a href="http://dx.doi.org/10.1016/S0019-9958(73)90273-8">An Upper Bound for Self-Dual Codes</a>, Information and Control, 22 (1973), 188-200.
%H A034597 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A034597 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%H A034597 N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).
%e A034597 When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
%p A034597 # Extremal theta series:
%p A034597 with(numtheory): B := 1:
%p A034597 # set mu:
%p A034597 for mu from 1 to 10 do
%p A034597    # set max deg:
%p A034597    md := mu+3;
%p A034597    f := 1+240*add(sigma[3](i)*x^i, i=1..md);
%p A034597    f := series(f, x, md);
%p A034597    f := series(f^3, x, md);
%p A034597    g := series(x*mul((1-x^i)^24, i=1..md), x, md);
%p A034597    W0 := series(f^mu, x, md):
%p A034597    h := series(g/f, x, md):
%p A034597    A := series(W0, x, md):
%p A034597    Z := A:
%p A034597    for i from 1 to mu do
%p A034597       Z := series(Z*h, x, md);
%p A034597       A := series(A-coeff(A, x, i)*Z, x, md);
%p A034597    od:
%p A034597    B := B, coeff(A,x,mu+1);
%p A034597 od:
%p A034597 lprint(B);
%t A034597 terms = 11; Reap[For[mu = 1, mu <= terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}];  f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[ i = 1 , i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+1}]; Print[an]; Sow[an]]][[2,1]] (* _Jean-François Alcover_, Jul 08 2017, adapted from Maple *)
%Y A034597 Cf. A034598 (second coefficient, which eventually becomes negative), A034414, A034415.
%K A034597 nonn
%O A034597 0,2
%A A034597 _N. J. A. Sloane_