cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034598 Second coefficient of extremal theta series of even unimodular lattice in dimension 24n.

This page as a plain text file.
%I A034598 #21 Jul 08 2025 21:19:35
%S A034598 1,16773120,39007332000,15281788354560,2972108280960000,
%T A034598 406954241261568000,45569082381053868000,4499117081888292864000,
%U A034598 408472720963469499617280,34975479259332252426240000
%N A034598 Second coefficient of extremal theta series of even unimodular lattice in dimension 24n.
%C A034598 Although these initially increase, they eventually go negative at about term 1700 (i.e. dimension about 40800) - see references.
%D A034598 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
%H A034598 N. J. A. Sloane, <a href="/A034598/b034598.txt">Table of n, a(n) for n = 0..100</a>
%H A034598 C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, <a href="https://doi.org/10.1016/0021-8693(75)90155-6">Upper bounds for modular forms, lattices and codes</a>, J. Alg., 36 (1975), 68-76.
%H A034598 C. L. Mallows and N. J. A. Sloane, <a href="http://dx.doi.org/10.1016/S0019-9958(73)90273-8">An Upper Bound for Self-Dual Codes</a>, Information and Control, 22 (1973), 188-200.
%H A034598 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A034598 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%H A034598 N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).
%e A034598 When n=1 we get the theta series of the 24-dimensional Leech lattice: 1+196560*q^4+16773120*q^6+... (see A008408). For n=2 we get A004672 and for n=3, A004675.
%p A034598 For Maple program see A034597.
%t A034598 terms = 10; Reap[For[mu = 1; Print[1]; Sow[1], mu < terms, mu++, md = mu + 3; f = 1 + 240*Sum[DivisorSigma[3, i]*x^i, {i, 1, md}]; f = Series[f, {x, 0, md}]; f = Series[f^3, {x, 0, md}]; g = Series[x*Product[ (1 - x^i)^24, {i, 1, md}], {x, 0, md}]; W0 = Series[f^mu, {x, 0, md}]; h = Series[g/f, {x, 0, md}]; A = Series[W0, {x, 0, md}]; Z = A; For[i = 1, i <= mu, i++, Z = Series[Z*h, {x, 0, md}]; A = Series[A - SeriesCoefficient[A, {x, 0, i}]*Z, {x, 0, md}]]; an = SeriesCoefficient[A, {x, 0, mu+2}]; Print[an]; Sow[an]]][[2,1]] (* _Jean-François Alcover_, Jul 08 2017, adapted from Maple program for A034597 *)
%Y A034598 Cf. A034597 (leading coefficient).
%K A034598 sign
%O A034598 0,2
%A A034598 _N. J. A. Sloane_