This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034677 #31 Sep 14 2020 02:55:58 %S A034677 1,9,28,65,126,252,344,513,730,1134,1332,1820,2198,3096,3528,4097, %T A034677 4914,6570,6860,8190,9632,11988,12168,14364,15626,19782,19684,22360, %U A034677 24390,31752,29792,32769,37296,44226,43344,47450,50654,61740,61544,64638,68922,86688,79508 %N A034677 Sum of cubes of unitary divisors of n. %C A034677 A unitary divisor of n is a divisor d such that gcd(d,n/d)=1. %H A034677 Amiram Eldar, <a href="/A034677/b034677.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %F A034677 Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2s-3). - _R. J. Mathar_, Mar 04 2011 %F A034677 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(3*k_j)). - _Ilya Gutkovskiy_, Nov 04 2018 %F A034677 Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / (360 * Zeta(5)). - _Vaclav Kotesovec_, Feb 01 2019 %e A034677 The unitary divisors of 6 are 1, 2, 3 and 6, so a(6) = 252. %t A034677 scud[n_]:=Total[Select[Divisors[n],CoprimeQ[#,n/#]&]^3]; Array[scud,40] (* _Harvey P. Dale_, Oct 16 2016 *) %t A034677 f[p_, e_] := p^(3*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 14 2020 *) %o A034677 (PARI) A034677_vec(len)={ %o A034677 a000012=direuler(p=2,len, 1/(1-X)) ; %o A034677 a000578=direuler(p=2,len, 1/(1-p^3*X)) ; %o A034677 a000578x=direuler(p=2,len, 1-p^3*X^2) ; %o A034677 dirmul(dirmul(a000012,a000578),a000578x) %o A034677 } %o A034677 A034677_vec(70) /* via D.g.f., _R. J. Mathar_, Mar 05 2011 */ %Y A034677 Cf. A034444, A034448. %Y A034677 Row n=3 of A286880. %K A034677 nonn,mult %O A034677 1,2 %A A034677 _Erich Friedman_