cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034679 Sum of fifth powers of unitary divisors.

This page as a plain text file.
%I A034679 #17 Aug 10 2019 04:53:01
%S A034679 1,33,244,1025,3126,8052,16808,32769,59050,103158,161052,250100,
%T A034679 371294,554664,762744,1048577,1419858,1948650,2476100,3204150,4101152,
%U A034679 5314716,6436344,7995636,9765626,12252702,14348908,17228200,20511150,25170552
%N A034679 Sum of fifth powers of unitary divisors.
%H A034679 Amiram Eldar, <a href="/A034679/b034679.txt">Table of n, a(n) for n = 1..10000</a>
%F A034679 Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(2s-5). - _R. J. Mathar_, Apr 12 2011
%F A034679 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(5*k_j)). - _Ilya Gutkovskiy_, Nov 04 2018
%F A034679 Sum_{k=1..n} a(k) ~ (Pi*n)^6 / (5670*Zeta(7)). - _Vaclav Kotesovec_, Feb 07 2019
%t A034679 Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^5], {n, 1, 50}] (* _Vaclav Kotesovec_, Feb 07 2019 *)
%t A034679 a[1] = 1; a[n_] := Times @@ (1 + First[#]^(5*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* _Amiram Eldar_, Aug 10 2019 *)
%Y A034679 Cf. A034444, A034448.
%Y A034679 Row n=5 of A286880.
%K A034679 nonn,mult
%O A034679 1,2
%A A034679 _Erich Friedman_