This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034680 #19 Aug 10 2019 04:52:46 %S A034680 1,65,730,4097,15626,47450,117650,262145,531442,1015690,1771562, %T A034680 2990810,4826810,7647250,11406980,16777217,24137570,34543730,47045882, %U A034680 64019722,85884500,115151530,148035890,191365850,244140626,313742650 %N A034680 Sum of sixth powers of unitary divisors. %H A034680 Amiram Eldar, <a href="/A034680/b034680.txt">Table of n, a(n) for n = 1..10000</a> %F A034680 Dirichlet g.f.: zeta(s)*zeta(s-6)/zeta(2s-6). - _R. J. Mathar_, Apr 12 2011 %F A034680 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(6*k_j)). - _Ilya Gutkovskiy_, Nov 04 2018 %F A034680 Sum_{k=1..n} a(k) ~ 1350*Zeta(7)*n^7 / Pi^8. - _Vaclav Kotesovec_, Feb 07 2019 %t A034680 Total[#^6]&/@Table[Select[Divisors[n],GCD[#,n/#]==1&],{n,30}] (* _Harvey P. Dale_, Jul 17 2011 *) %t A034680 a[1] = 1; a[n_] := Times @@ (1 + First[#]^(6*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* _Amiram Eldar_, Aug 10 2019 *) %Y A034680 Cf. A034444, A034448. %Y A034680 Row n=6 of A286880. %K A034680 nonn,mult %O A034680 1,2 %A A034680 _Erich Friedman_