This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034681 #17 Aug 10 2019 04:53:30 %S A034681 1,129,2188,16385,78126,282252,823544,2097153,4782970,10078254, %T A034681 19487172,35850380,62748518,106237176,170939688,268435457,410338674, %U A034681 617003130,893871740,1280094510,1801914272,2513845188,3404825448 %N A034681 Sum of seventh powers of unitary divisors. %H A034681 Amiram Eldar, <a href="/A034681/b034681.txt">Table of n, a(n) for n = 1..10000</a> %F A034681 Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(2s-7). - _R. J. Mathar_, Apr 12 2011 %F A034681 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(7*k_j)). - _Ilya Gutkovskiy_, Nov 04 2018 %F A034681 Sum_{k=1..n} a(k) ~ (Pi*n)^8 / (75600*Zeta(9)). - _Vaclav Kotesovec_, Feb 07 2019 %t A034681 Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^7], {n, 1, 50}] (* _Vaclav Kotesovec_, Feb 07 2019 *) %t A034681 a[1] = 1; a[n_] := Times @@ (1 + First[#]^(7*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* _Amiram Eldar_, Aug 10 2019 *) %Y A034681 Cf. A034444, A034448. %Y A034681 Row n=7 of A286880. %K A034681 nonn,mult %O A034681 1,2 %A A034681 _Erich Friedman_