cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034682 Sum of eighth powers of unitary divisors.

This page as a plain text file.
%I A034682 #19 Aug 10 2019 04:52:27
%S A034682 1,257,6562,65537,390626,1686434,5764802,16777217,43046722,100390882,
%T A034682 214358882,430053794,815730722,1481554114,2563287812,4294967297,
%U A034682 6975757442,11063007554,16983563042,25600456162,37828630724
%N A034682 Sum of eighth powers of unitary divisors.
%H A034682 Amiram Eldar, <a href="/A034682/b034682.txt">Table of n, a(n) for n = 1..10000</a>
%F A034682 Dirichlet g.f.: zeta(s)*zeta(s-8)/zeta(2s-8). - _R. J. Mathar_, Apr 12 2011
%F A034682 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(8*k_j)). - _Ilya Gutkovskiy_, Nov 04 2018
%F A034682 Sum_{k=1..n} a(k) ~ 10395*Zeta(9)*n^9 / Pi^10. - _Vaclav Kotesovec_, Feb 07 2019
%t A034682 Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^8], {n, 1, 50}] (* _Vaclav Kotesovec_, Feb 07 2019 *)
%t A034682 a[1] = 1; a[n_] := Times @@ (1 + First[#]^(8*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* _Amiram Eldar_, Aug 10 2019 *)
%Y A034682 Cf. A034444, A034448.
%Y A034682 Row n=8 of A286880.
%K A034682 nonn,mult
%O A034682 1,2
%A A034682 _Erich Friedman_