This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034683 #34 Jul 20 2024 09:01:43 %S A034683 30,42,66,70,78,102,114,138,150,174,186,210,222,246,258,282,294,318, %T A034683 330,354,366,390,402,420,426,438,462,474,498,510,534,546,570,582,606, %U A034683 618,630,642,654,660,678,690,714,726,750,762,770,780,786,798,822,834 %N A034683 Unitary abundant numbers: numbers k such that usigma(k) > 2*k. %C A034683 If a term n in the sequence ends in neither 0 nor 5, then 10*n is also in the sequence. - _Lekraj Beedassy_, Jun 11 2004 %C A034683 The lower asymptotic density of this sequence is larger than 1/18 = 0.0555... which is the density of its subsequence of numbers of the form 6*m where gcd(m, 6) = 1 and m > 1. Numerically, based on counts of terms below 10^n (A302993), it seems that this sequence has an asymptotic density which equals to about 0.070034... - _Amiram Eldar_, Feb 13 2021 %C A034683 The asymptotic density of this sequence is in the interval (0.0674, 0.1055) (Wall, 1970). - _Amiram Eldar_, Apr 18 2024 %C A034683 All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, usigma(k)/k < 15/Pi^2 = 1.519817... (A082020; the record values are attained at the squares of primorials, A061742). - _Amiram Eldar_, Jul 20 2024 %D A034683 C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978. %H A034683 Nathaniel Johnston, <a href="/A034683/b034683.txt">Table of n, a(n) for n = 1..10000</a> %H A034683 Charles Robert Wall, <a href="https://trace.tennessee.edu/utk_graddiss/8570/">Topics related to the sum of unitary divisors of an integer</a>, Ph.D. diss., University of Tennessee, 1970. %p A034683 isA034683 := proc(n) %p A034683 is(A034448(n) > 2*n) ; %p A034683 end proc: %p A034683 for n from 1 do %p A034683 if isA034683(n) then %p A034683 print(n); %p A034683 end if; %p A034683 end do: # _R. J. Mathar_, Nov 10 2014 %t A034683 usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; %t A034683 Select[Range[1000], usigma[#] > 2#&] (* _Jean-François Alcover_, Mar 23 2020, after _Giovanni Resta_ in A034448 *) %o A034683 (PARI) is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n;} \\ _Amiram Eldar_, Apr 18 2024 %Y A034683 Subsequence of A005101. %Y A034683 Cf. A034444, A034448, A129487, A302993. %Y A034683 Cf. A001694, A061742, A082020. %K A034683 nonn %O A034683 1,1 %A A034683 _Erich Friedman_