cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034710 Positive numbers for which the sum of digits equals the product of digits.

This page as a plain text file.
%I A034710 #67 Feb 08 2024 07:11:18
%S A034710 1,2,3,4,5,6,7,8,9,22,123,132,213,231,312,321,1124,1142,1214,1241,
%T A034710 1412,1421,2114,2141,2411,4112,4121,4211,11125,11133,11152,11215,
%U A034710 11222,11251,11313,11331,11512,11521,12115,12122,12151,12212,12221,12511
%N A034710 Positive numbers for which the sum of digits equals the product of digits.
%C A034710 Positive numbers k such that A007953(k) = A007954(k).
%C A034710 If k is a term, the digits of k are solutions of the equation x1*x2*...*xr = x1 + x2 + ... + xr; xi are from [1..9]. Permutations of digits (x1,...,xr) are different numbers k with the same property A007953(k) = A007954(k). For example: x1*x2 = x1 + x2; this equation has only 1 solution, (2,2), which gives the number 22. x1*x2*x3 = x1 + x2 + x3 has a solution (1,2,3), so the numbers 123, 132, 213, 231, 312, 321 have the property. - _Ctibor O. Zizka_, Mar 04 2008
%C A034710 Subsequence of A249334 (numbers for which the digital sum contains the same distinct digits as the digital product). With {0}, complement of A249335 with respect to A249334. Sequence of corresponding values of A007953(a(n)) = A007954(a(n)): 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ... contains only numbers from A002473. See A248794. - _Jaroslav Krizek_, Oct 25 2014
%C A034710 There are terms of the sequence ending in any term of A052382. - _Robert Israel_, Nov 02 2014
%C A034710 The number of digits which are not 1 in a(n) is O(log log a(n)) and tends to infinity as a(n) does. - _Robert Dougherty-Bliss_, Jun 23 2020
%H A034710 Alois P. Heinz, <a href="/A034710/b034710.txt">Table of n, a(n) for n = 1..27597</a> (first 1200 terms from T. D. Noe)
%e A034710 1124 is a term since 1 + 1 + 2 + 4 = 1*1*2*4 = 8.
%t A034710 Select[Range[12512], (Plus @@ IntegerDigits[ # ]) == (Times @@ IntegerDigits[ # ]) &] (* _Alonso del Arte_, May 16 2005 *)
%o A034710 (Haskell)
%o A034710 import Data.List (elemIndices)
%o A034710 a034710 n = a034710_list !! (n-1)
%o A034710 a034710_list = elemIndices 0 $ map (\x -> a007953 x - a007954 x) [1..]
%o A034710 -- _Reinhard Zumkeller_, Mar 19 2011
%o A034710 (Magma) [n: n in [1..10^6] | &*Intseq(n) eq &+Intseq(n)] // _Jaroslav Krizek_, Oct 25 2014
%o A034710 (PARI) is(n)=my(d=digits(n)); vecsum(d)==factorback(d) \\ _Charles R Greathouse IV_, Feb 06 2017
%Y A034710 Cf. A002473, A007953, A007954, A052382, A061672, A248794, A249334, A249335.
%Y A034710 Cf. A066306 (prime terms), A066307 (nonprimes).
%K A034710 nonn,base,nice,easy
%O A034710 1,2
%A A034710 _Erich Friedman_
%E A034710 Corrected by Larry Reeves (larryr(AT)acm.org), Jun 27 2001
%E A034710 Definition changed by _N. J. A. Sloane_ to specifically exclude 0, Sep 22 2007