cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034742 Dirichlet convolution of Moebius function mu(n) (A008683) with Catalan numbers (A000108).

This page as a plain text file.
%I A034742 #16 Sep 11 2019 05:08:26
%S A034742 1,0,1,4,13,40,131,424,1428,4848,16795,58740,208011,742768,2674425,
%T A034742 9694416,35357669,129643320,477638699,1767258324,6564120287,
%U A034742 24466250224,91482563639,343059554440,1289904147310,4861946193440,18367353070722,69533550173100,263747951750359
%N A034742 Dirichlet convolution of Moebius function mu(n) (A008683) with Catalan numbers (A000108).
%F A034742 G.f. A(x) satisfies: Sum_{n>=1} A((x-x^2)^n) = x. - _Paul D. Hanna_, Jan 04 2015
%F A034742 a(n) = Sum_{d|n} Moebius(n/d) * binomial(2*(d-1), d-1)/d. - _Paul D. Hanna_, Jan 04 2015
%F A034742 a(n) ~ 2^(2*n-2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Sep 11 2019
%e A034742 G.f. = x + x^3 + 4*x^4 + 13*x^5 + 40*x^6 + 131*x^7 + 424*x^8 + 1428*x^9 + ...
%t A034742 Table[Sum[MoebiusMu[n/d]*CatalanNumber[d-1], {d, Divisors[n]}], {n, 1, 30}] (* _Vaclav Kotesovec_, Sep 10 2019 *)
%o A034742 (PARI) /* Dirichlet convolution of mu(n) with Catalan numbers: */
%o A034742 {a(n) = sumdiv(n, d, moebius(n/d) * binomial(2*(d-1),d-1)/d)}
%o A034742 for(n=1,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 04 2015
%o A034742 (PARI) /* G.f. satisfies: Sum_{n>=1} A((x-x^2)^n) = x: */
%o A034742 {a(n)=local(A=[1,0]);for(i=1,n,A=concat(A,0);A[#A]=-Vec(sum(n=1,#A,subst(x*Ser(A),x,(x-x^2 +x*O(x^#A))^n)))[#A]);A[n]}
%o A034742 for(n=1,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 04 2015
%K A034742 nonn,easy
%O A034742 1,4
%A A034742 _Erich Friedman_