cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034779 Dirichlet convolution of [ 1,1,1,... ] with A034778.

This page as a plain text file.
%I A034779 #20 Sep 20 2019 03:54:17
%S A034779 1,-47,505,-2415,9661,-23735,-33487,237201,-163277,-454067,1069225,
%T A034779 -1219575,-1155475,1573889,4878805,323217,-13811867,7674019,21322841,
%U A034779 -23331315,-16910935,-50253575,37286545,119786505
%N A034779 Dirichlet convolution of [ 1,1,1,... ] with A034778.
%C A034779 Multiplicative because both A000012 and A034778 are. - _Christian G. Bower_, May 16 2005
%t A034779 b[n_] := DivisorSum[n, RamanujanTau[#] RamanujanTau[n/#]&];
%t A034779 a[n_] := DivisorSum[n, b];
%t A034779 a /@ Range[1, 24] (* _Jean-François Alcover_, Sep 20 2019 *)
%o A034779 (PARI) seq(n)={my(v=Vec(eta(x + O(x^n))^24)); dirmul(dirmul(v,v), vector(#v,n,1))} \\ _Andrew Howroyd_, Feb 12 2018
%Y A034779 Cf. A000012, A034778.
%K A034779 sign,mult
%O A034779 1,2
%A A034779 _N. J. A. Sloane_
%E A034779 Offset corrected by _Andrew Howroyd_, Feb 11 2018