cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034792 Lexicographically earliest sequence of pairwise coprime triangular numbers.

This page as a plain text file.
%I A034792 #18 Mar 02 2019 11:53:53
%S A034792 1,3,10,91,253,703,1711,1891,3403,5671,12403,15931,18721,25651,34453,
%T A034792 38503,60031,73153,79003,88831,104653,108811,114481,126253,146611,
%U A034792 158203,166753,171991,188191,218791,226801,258121,269011,286903,351541,371953,385003,392941
%N A034792 Lexicographically earliest sequence of pairwise coprime triangular numbers.
%C A034792 Previous name was: a(n) triangular, coprime to a(i), i < n.
%C A034792 Sierpinski proved that any finite set of pairwise coprime triangular numbers can be extended by adding an additional triangular number which is coprime to all the elements of the set. Therefore this sequence is infinite. - _Amiram Eldar_, Mar 01 2019
%D A034792 W. SierpiƄski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970, Problem 42.
%H A034792 Amiram Eldar, <a href="/A034792/b034792.txt">Table of n, a(n) for n = 1..10000</a>
%t A034792 t[n_] := n (n + 1)/2; s = {1}; While[Length[s] < 50, k = s[[-1]] + 1; While[Max[GCD[t[k], t /@ s]] > 1, k++]; AppendTo[s, k]]; t /@ s (* _Amiram Eldar_, Mar 01 2019 *)
%Y A034792 Cf. A000217, A076818.
%K A034792 nonn
%O A034792 1,2
%A A034792 _David W. Wilson_
%E A034792 New name and more terms from _Amiram Eldar_, Mar 01 2019