This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034797 #59 Aug 24 2025 23:42:23 %S A034797 0,1,3,11,2059 %N A034797 a(0) = 0; a(n+1) = a(n) + 2^a(n). %C A034797 First impartial game with value n, using natural enumeration of impartial games. %C A034797 The natural 1-1 correspondence between nonnegative numbers and hereditarily finite sets is given by f(A)=sum over members m of A of 2^f(m). A set can be considered an impartial game where the legal moves are the members. The value of an impartial game is always an ordinal (for finite games, an integer). %C A034797 The next term, a(5) = 2^2059 + 2059, has 620 decimal digits and is too large to include. - _Olivier Gérard_, Jun 26 2001 %C A034797 Positions of records in A103318. - _N. J. A. Sloane_ and _David Applegate_, Mar 21 2005 %C A034797 The first n terms in this sequence form the lexicographically earliest n-vertex clique in the Ackermann-Rado encoding of the Rado graph (an infinite graph in which vertex i is adjacent to vertex j, with i<j, when the i-th bit of the binary representation of j is nonzero). - _David Eppstein_, Aug 22 2014 %C A034797 This sequence was used by Spiro to bound the density of refactorable numbers (A033950). - _David Eppstein_, Aug 22 2014 %C A034797 For any positive integer m, a(1), a(2), ..., a(3^m) modulo 3^m form a complete residue set. - _Yifan Xie_, Aug 19 2025 %D A034797 J. H. Conway, On Numbers and Games, Academic Press. %H A034797 N. J. A. Sloane, <a href="/A034797/b034797.txt">Table of n, a(n) for n = 0..5</a> %H A034797 Wilhelm Ackermann, <a href="http://dx.doi.org/10.1007/BF01594179">Die Widerspruchsfreiheit der allgemeinen Mengenlehre</a>, Math. Ann. 114 (1939), no. 1, 305-315. %H A034797 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. Preprint versions: [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>]. %H A034797 O. Kurganskyy and I. Potapov, <a href="http://arxiv.org/abs/1510.04121">Reachability problems for PAMs</a>, arXiv preprint arXiv:1510.04121 [cs.NA], 2015. %H A034797 Richard Rado, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa9/aa9133.pdf">Universal graphs and universal functions</a>, Acta Arith. 9 (1964), 331-340. %H A034797 Claudia Spiro, <a href="http://dx.doi.org/10.1016/0022-314X(85)90012-5">How often is the number of divisors of n a divisor of n?</a>, J. Number Theory 21 (1985), no. 1, 81-100. %H A034797 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rado_graph">Rado graph</a>. %t A034797 a=0;lst={a};Do[AppendTo[lst,a+=2^a],{n,0,4}];lst (* _Vladimir Joseph Stephan Orlovsky_, May 06 2010 *) %t A034797 NestList[#+2^#&,0,5] (* _Harvey P. Dale_, Mar 22 2020 *) %Y A034797 Cf. A034798, A103318. %K A034797 nonn,changed %O A034797 0,3 %A A034797 Joseph Shipman (shipman(AT)savera.com)