This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034801 #18 Jul 02 2025 16:01:56 %S A034801 1,1,1,1,3,1,1,8,8,1,1,21,56,21,1,1,55,385,385,55,1,1,144,2640,6930, %T A034801 2640,144,1,1,377,18096,124410,124410,18096,377,1,1,987,124033, %U A034801 2232594,5847270,2232594,124033,987,1,1,2584,850136,40062659,274715376,274715376,40062659,850136,2584,1 %N A034801 Triangle of Fibonomial coefficients (k=2). %D A034801 A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 88. %H A034801 G. C. Greubel, <a href="/A034801/b034801.txt">Rows n = 0..100 of triangle, flattened</a> %H A034801 C. Pita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita/pita12.html">On s-Fibonomials</a>, J. Int. Seq. 14 (2011) # 11.3.7. %H A034801 C. J. Pita Ruiz Velasco, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita2/pita8.html">Sums of Products of s-Fibonacci Polynomial Sequences</a>, J. Int. Seq. 14 (2011) # 11.7.6. %F A034801 Fibonomial coefficients formed from sequence F_3k [ 2, 8, 34, ... ]. %F A034801 T(n, k) = Product_{j=0..k-1} Fibonacci(2*(n-j)) / Product_{j=1..k} Fibonacci(2*j). %e A034801 Triangle begins as: %e A034801 1; %e A034801 1, 1; %e A034801 1, 3, 1; %e A034801 1, 8, 8, 1; %e A034801 1, 21, 56, 21, 1; %e A034801 1, 55, 385, 385, 55, 1; %e A034801 1, 144, 2640, 6930, 2640, 144, 1; %e A034801 1, 377, 18096, 124410, 124410, 18096, 377, 1; %e A034801 1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1; %p A034801 A034801 := proc(n,k) %p A034801 mul(combinat[fibonacci](2*n-2*j),j=0..k-1) / %p A034801 mul(combinat[fibonacci](2*j),j=1..k) ; %p A034801 end proc: # _R. J. Mathar_, Sep 02 2017 %t A034801 F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j,k}]; %t A034801 Table[F[n, k, 2], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 13 2019 *) %o A034801 (PARI) F(n,k,q) = f=fibonacci; prod(j=1,k, f(q*(n-j+1))/f(q*j)); \\ _G. C. Greubel_, Nov 13 2019 %o A034801 (Sage) %o A034801 def F(n,k,q): %o A034801 if (n==0 and k==0): return 1 %o A034801 else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k)) %o A034801 [[F(n,k,2) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 13 2019 %o A034801 (GAP) %o A034801 F:= function(n,k,q) %o A034801 if n=0 and k=0 then return 1; %o A034801 else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j)); %o A034801 fi; %o A034801 end; %o A034801 Flat(List([0..10], n-> List([0..n], k-> F(n,k,2) ))); # _G. C. Greubel_, Nov 13 2019 %Y A034801 Cf. A010048. %K A034801 nonn,tabl %O A034801 0,5 %A A034801 _N. J. A. Sloane_ %E A034801 More terms from _James Sellers_, Feb 09 2000