This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034806 #21 Nov 03 2023 17:02:03 %S A034806 2,5,9,12,17,22,28,32,40,41,50,56,63,68,78,80,91,94,102,110,120,123, %T A034806 131,141,148,156,166,163,179,185,195,206,214,211,229,237,248,248,265, %U A034806 260,281,284,296,305,314,320,333,337 %N A034806 Number of distinct sets of 2 numbers > 1 such that their product is between n^2 and (n+1)^2. %H A034806 Michael De Vlieger, <a href="/A034806/b034806.txt">Table of n, a(n) for n = 2..1000</a> %H A034806 A. Cayley, <a href="/A000022/a000022.pdf">Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen</a>, Chem. Ber. 8 (1875), 1056-1059. (Annotated scanned copy) [Annotation on p. 1057 references this A-number, but probably A034790 (which is given at the end of p. 1058) was meant instead. - _Andrey Zabolotskiy_, Nov 03 2023] %F A034806 a(n) = Sum_{k=2..n} floor((2n + (n^2 mod k))/k). %e A034806 a(3)=5 because the only pairs of numbers > 1 that form a product between 3^2 and 4^2 are (2,5) (2,6) (3,4) (2,7) (3,5). %t A034806 Array[Sum[Floor[(2 # + PowerMod[#, 2, k])/k], {k, 2, #}] &, 48, 2] (* _Michael De Vlieger_, Jan 22 2018 *) %o A034806 (PARI) A034806(n) = sum(k=2,n,floor(((n+1)^2-1)/k)-floor(n^2/k)) \\ _Michael B. Porter_, Mar 13 2010 %Y A034806 Cf. A037048, A037092. %K A034806 nonn %O A034806 2,1 %A A034806 Joe K. Crump (joecr(AT)carolina.rr.com)