This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034827 N0778 #104 Feb 16 2025 08:32:37 %S A034827 0,0,0,0,2,10,30,70,140,252,420,660,990,1430,2002,2730,3640,4760,6120, %T A034827 7752,9690,11970,14630,17710,21252,25300,29900,35100,40950,47502, %U A034827 54810,62930,71920,81840,92752,104720,117810,132090,147630,164502,182780 %N A034827 a(n) = 2*binomial(n,4). %C A034827 Also number of ways to insert two pairs of parentheses into a string of n-4 letters (allowing empty pairs of parentheses). E.g., there are 30 ways for 2 letters. Cf. A002415. %C A034827 2,10,30,70, ... gives orchard crossing number of complete graph K_n. - _Ralf Stephan_, Mar 28 2003 %C A034827 If Y is a 2-subset of an n-set X then, for n>=4, a(n-1) is the number of 4-subsets and 5-subsets of X having exactly one element in common with Y. - _Milan Janjic_, Dec 28 2007 %C A034827 Middle column of table on p. 6 of Feder and Garber. - _Jonathan Vos Post_, Apr 23 2009 %C A034827 Number of pairs of non-intersecting lines when each of n points around a circle is joined to every other point by straight lines. A pair of lines is considered non-intersecting if the lines do not intersect in either the interior or the boundary of a circle. - _Melvin Peralta_, Feb 05 2016 %C A034827 From a(2), convolution of the oblong numbers (A002378) with the nonnegative numbers (A001477). - _Bruno Berselli_, Oct 24 2016 %C A034827 Also the number of 3-cycles in the n-triangular honeycomb bishop graph. - _Eric W. Weisstein_, Aug 10 2017 %D A034827 Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449. %D A034827 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %H A034827 Bruno Berselli, <a href="/A034827/b034827.txt">Table of n, a(n) for n = 0..1000</a> %H A034827 M. Aganagic, A. Klemm and C. Vafa, <a href="http://arXiv.org/abs/hep-th/0105045">Disk Instantons, Mirror Symmetry and the Duality Web</a>, arXiv:hep-th/0105045, 2001. %H A034827 Steven Edwards and William Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Griffiths/griffiths51.html">On Generalized Delannoy Numbers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.3.6. %H A034827 Elie Feder and David Garber, <a href="http://arxiv.org/abs/math/0303317">The Orchard crossing number of an abstract graph</a>, arXiv:math/0303317 [math.CO], 2003-2009. %H A034827 S. M. Losanitsch, <a href="http://dx.doi.org/10.1002/cber.189703002144">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), pp. 1917-1926. %H A034827 S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy) %H A034827 Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015. %H A034827 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>. %H A034827 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A034827 a(n) = A096338(2*n-6) = 2*A000332(n), n>2. - _R. J. Mathar_, Nov 08 2010 %F A034827 G.f.: 2*x^4/(1-x)^5. - _Colin Barker_, Feb 29 2012 %F A034827 a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - _Wesley Ivan Hurt_, Sep 26 2013 %F A034827 E.g.f.: x^4*exp(x)/12. - _G. C. Greubel_, Feb 23 2017 %F A034827 From _Amiram Eldar_, Jul 19 2022: (Start) %F A034827 Sum_{n>=4} 1/a(n) = 2/3. %F A034827 Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End) %p A034827 [seq(binomial(n,4)*2,n=0..40)]; # _Zerinvary Lajos_, Jul 18 2006 %t A034827 CoefficientList[Series[2 x^4/(1 - x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 20 2013 *) %t A034827 LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 2}, 50] (* _Harvey P. Dale_, Jun 09 2016 *) %t A034827 Table[2 Binomial[n, 4], {n, 0, 40}] (* _Bruno Berselli_, Oct 24 2016 *) %t A034827 2 Binomial[Range[0, 20], 4] (* _Eric W. Weisstein_, Aug 10 2017 *) %o A034827 (Magma) [2*Binomial(n,4): n in [0..40]]; // _Vincenzo Librandi_, Oct 20 2013 %o A034827 (PARI) a(n)=2*binomial(n,4) \\ _Charles R Greathouse IV_, Jun 23 2015 %Y A034827 A diagonal of A088617. %Y A034827 Cf. A033487, A050534, A060008. %Y A034827 Partial sums of A007290. %Y A034827 Cf. A001477, A002378. %Y A034827 Cf. A051843 (4-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles). %K A034827 nonn,easy %O A034827 0,5 %A A034827 _N. J. A. Sloane_