cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034837 Numbers that are divisible by the first, i.e., the leftmost, digit.

This page as a plain text file.
%I A034837 #43 May 01 2023 19:33:54
%S A034837 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,26,28,30,33,
%T A034837 36,39,40,44,48,50,55,60,66,70,77,80,88,90,99,100,101,102,103,104,105,
%U A034837 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122
%N A034837 Numbers that are divisible by the first, i.e., the leftmost, digit.
%C A034837 A 10-automatic sequence. - _Charles R Greathouse IV_, Jun 13 2017
%H A034837 Reinhard Zumkeller, <a href="/A034837/b034837.txt">Table of n, a(n) for n = 1..10000</a>
%H A034837 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A034837 a(n) mod A000030(a(n)) = 0. - _Reinhard Zumkeller_, Sep 20 2003
%t A034837 Select[Range[150],Divisible[#,IntegerDigits[#][[1]]]&] (* _Harvey P. Dale_, Jul 11 2017 *)
%o A034837 (Haskell)
%o A034837 import Data.Char (digitToInt)
%o A034837 a034837 n = a034837_list !! (n-1)
%o A034837 a034837_list = filter (\i -> i `mod` (a000030 i) == 0) [1..]
%o A034837 -- _Reinhard Zumkeller_, Jun 19 2011
%o A034837 (PARI) for(n=1,1000,n%(Vecsmall(Str(n))[1]-48) || print1(n",")) \\ _M. F. Hasler_, Jun 19 2011
%o A034837 (PARI) a(n)=for(k=1,1e9,k%(Vecsmall(Str(k))[1]-48) || n-- || return(k)) \\  _M. F. Hasler_, Jun 19 2011
%o A034837 (Python)
%o A034837 def ok(n): return n and n%int(str(n)[0]) == 0
%o A034837 print([k for k in range(123) if ok(k)]) # _Michael S. Branicky_, Jan 15 2023
%o A034837 (Python)
%o A034837 from itertools import count, islice
%o A034837 def agen(): # generator of terms
%o A034837     yield from (i for e in count(0) for f in range(1, 10) for i in range(f*10**e, (f+1)*10**e, f))
%o A034837 print(list(islice(agen(), 64))) # _Michael S. Branicky_, Jan 15 2023
%Y A034837 Cf. A034709 (divisible by last digit).
%K A034837 nonn,base,nice,look,easy
%O A034837 1,2
%A A034837 _Erich Friedman_
%E A034837 Definition clarified by _Harvey P. Dale_, May 01 2023