cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034839 Triangular array formed by taking every other term of each row of Pascal's triangle.

This page as a plain text file.
%I A034839 #128 Feb 16 2025 08:32:37
%S A034839 1,1,1,1,1,3,1,6,1,1,10,5,1,15,15,1,1,21,35,7,1,28,70,28,1,1,36,126,
%T A034839 84,9,1,45,210,210,45,1,1,55,330,462,165,11,1,66,495,924,495,66,1,1,
%U A034839 78,715,1716,1287,286,13
%N A034839 Triangular array formed by taking every other term of each row of Pascal's triangle.
%C A034839 Number of compositions of n having k parts greater than 1. Example: T(5,2)=5 because we have 3+2, 2+3, 2+2+1, 2+1+2 and 1+2+2. Number of binary words of length n-1 having k runs of consecutive 1's. Example: T(5,2)=5 because we have 1010, 1001, 0101, 1101 and 1011. - _Emeric Deutsch_, Mar 30 2005
%C A034839 From _Gary W. Adamson_, Oct 17 2008: (Start)
%C A034839 Received from _Herb Conn_:
%C A034839 Let T = tan x, then
%C A034839 tan x = T
%C A034839 tan 2x = 2T / (1 - T^2)
%C A034839 tan 3x = (3T - T^3) / (1 - 3T^2)
%C A034839 tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
%C A034839 tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
%C A034839 tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
%C A034839 tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
%C A034839 tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
%C A034839 tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
%C A034839 ... To get the next one in the series, (tan 10x), for the numerator add:
%C A034839 9....84....126....36....1 previous numerator +
%C A034839 1....36....126....84....9 previous denominator =
%C A034839 10..120....252...120...10 = new numerator
%C A034839 For the denominator add:
%C A034839 ......9.....84...126...36...1 = previous numerator +
%C A034839 1....36....126....84....9.... = previous denominator =
%C A034839 1....45....210...210...45...1 = new denominator
%C A034839 ...where numerators = A034867, denominators = A034839
%C A034839 (End)
%C A034839 Triangle, with zeros omitted, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 12 2011
%C A034839 The row (1,66,495,924,495,66,1) plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534. - _Tom Copeland_, Dec 12 2016
%C A034839 Binomial(n,2k) is also the number of permutations avoiding both 123 and 132 with k ascents, i.e., positions with w[i]<w[i+1]. - _Lara Pudwell_, Dec 19 2018
%C A034839 Coefficients in expansion of ((x-1)^n+(x+1)^n)/2 or ((x-i)^n+(x+i)^n)/2 with alternating sign. - _Eugeniy Sokol_, Sep 20 2020
%C A034839 Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with the maximum number of non-overlapping descents equal k (equivalently, with the maximum number of non-overlapping ascents equal k). An ascent (resp., descent) in a permutation a(1)a(2)...a(n) is position i such that a(i) < a(i+1) (resp., a(i) > a(i+1)). - _Tian Han_, Nov 16 2023
%H A034839 G. C. Greubel, <a href="/A034839/b034839.txt">Table of n, a(n) for the first 101 rows, flattened</a>
%H A034839 M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, <a href="https://arxiv.org/abs/1812.07112">Distributions of Statistics over Pattern-Avoiding Permutations</a>, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
%H A034839 H. Chan, S. Cooper, and P. Toh, <a href="http://dx.doi.org/10.1016/j.aim.2005.12.003">The 26th power of Dedekind's eta function</a> Advances in Mathematics, 207 (2006) 532-543.
%H A034839 Tom Copeland, <a href="https://tcjpn.wordpress.com/2020/07/15/juggling-zeros-in-the-matrix-example-ii/">Juggling Zeros in the Matrix: Example II</a>, 2020.
%H A034839 C. Corsani, D. Merlini, and R. Sprugnoli, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00110-6">Left-inversion of combinatorial sums</a>, Discrete Mathematics, 180 (1998) 107-122.
%H A034839 Tian Han and Sergey Kitaev, <a href="https://arxiv.org/abs/2311.02974">Joint distributions of statistics over permutations avoiding two patterns of length 3</a>, arXiv:2311.02974 [math.CO], 2023.
%H A034839 S.-M. Ma, <a href="http://arxiv.org/abs/1205.0735">On some binomial coefficients related to the evaluation of tan(nx)</a>, arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 13 2012
%H A034839 K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, <a href="http://dx.doi.org/10.1080/0035919X.2012.727363">[DOI]</a>; <a href="http://math.sun.ac.za/~hproding/pdffiles/Avery-contribution-July-2012.pdf">[PDF]</a>. - From _N. J. A. Sloane_, Jan 03 2013
%H A034839 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Tangent.html">Tangent</a> [From _Eric W. Weisstein_, Oct 18 2008]
%F A034839 E.g.f.: exp(x)*cosh(x*sqrt(y)). - _Vladeta Jovovic_, Mar 20 2005
%F A034839 From _Emeric Deutsch_, Mar 30 2005: (Start)
%F A034839 T(n, k) = binomial(n, 2*k), for n >= 0 and k = 0, 1, ..., floor(n/2).
%F A034839 G.f.: (1-z)/((1-z)^2 - t*z^2). (End)
%F A034839 O.g.f. for column no. k is (1/(1-x))*(x/(1-x))^(2*k), k >= 0 [from the g.f. given in the preceding formula]. - _Wolfdieter Lang_, Jan 18 2013
%F A034839 From _Peter Bala_, Jul 14 2015: (Start)
%F A034839 Stretched Riordan array ( 1/(1 - x ), x^2/(1 - x)^2 ) in the terminology of Corsani et al.
%F A034839 Denote this array by P. Then P * A007318 = A201701.
%F A034839 P * transpose(P) is A119326 read as a square array.
%F A034839 Let Q denote the array ( (-1)^k*binomial(2*n,k) )n,k>=0. Q is a signed version of A034870. Then Q*P = the identity matrix, that is, Q is a left-inverse array of P (see Corsani et al., p. 111).
%F A034839 P * A034870 = A080928. (End)
%F A034839 Even rows are A086645. An aerated version of this array is A099174 with each diagonal divided by the first element of the diagonal, the double factorials A001147. - _Tom Copeland_, Dec 12 2015
%e A034839 Triangular array begins:
%e A034839   1
%e A034839   1
%e A034839   1  1
%e A034839   1  3
%e A034839   1  6  1
%e A034839   1 10  5
%e A034839   1 15 15 1
%e A034839   ...
%e A034839 cosh(4x) = (cosh x)^5 + 10 (cosh x)^3 (sinh x)^2 + 5 (cosh x) (sinh x)^4, so row 4 is (1,10,5). See Mathematica program. - _Clark Kimberling_, Aug 03 2024
%p A034839 for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # _Emeric Deutsch_, Mar 30 2005
%t A034839 u[1, x_] := 1; v[1, x_] := 1; z = 12;
%t A034839 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
%t A034839 v[n_, x_] := u[n - 1, x] + v[n - 1, x]
%t A034839 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A034839 TableForm[cu]  (* A034839 as a triangle *)
%t A034839 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A034839 TableForm[cv]  (* A034867 as a triangle *)
%t A034839 (* _Clark Kimberling_, Feb 18 2012 *)
%t A034839 Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* _Michael De Vlieger_, Dec 13 2016 *)
%t A034839 (* The triangle gives coefficients for cosh(nx) as a linear combination of products (cosh(x)^h)*(sinh(x)^k) *)
%t A034839 Column[Table[TrigExpand[Cosh[n  x]], {n, 0, 10}]]
%t A034839 (* _Clark Kimberling_, Aug 03 2024 *)
%o A034839 (PARI) for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ _G. C. Greubel_, Feb 23 2018
%o A034839 (Magma) /* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // _G. C. Greubel_, Feb 23 2018
%Y A034839 Cf. A007318, A034867, A034870, A080928, A119326, A201701.
%Y A034839 Cf. A008619 (row lengths), A086645.
%K A034839 nonn,easy,tabf
%O A034839 0,6
%A A034839 _N. J. A. Sloane_