This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034868 #45 Oct 18 2023 10:03:19 %S A034868 1,1,1,2,1,3,1,4,6,1,5,10,1,6,15,20,1,7,21,35,1,8,28,56,70,1,9,36,84, %T A034868 126,1,10,45,120,210,252,1,11,55,165,330,462,1,12,66,220,495,792,924, %U A034868 1,13,78,286,715,1287,1716,1,14,91,364,1001,2002,3003,3432,1,15 %N A034868 Left half of Pascal's triangle. %H A034868 Reinhard Zumkeller, <a href="/A034868/b034868.txt">Rows n=0..150 of triangle, flattened</a> %H A034868 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A034868 T(n,k) = A034869(n,floor(n/2)-k), k = 0..floor(n/2). - _Reinhard Zumkeller_, Jul 27 2012 %e A034868 1; %e A034868 1; %e A034868 1, 2; %e A034868 1, 3; %e A034868 1, 4, 6; %e A034868 1, 5, 10; %e A034868 1, 6, 15, 20; %e A034868 ... %t A034868 Flatten[ Table[ Binomial[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* _Robert G. Wilson v_, May 28 2005 *) %o A034868 (Haskell) %o A034868 a034868 n k = a034868_tabf !! n !! k %o A034868 a034868_row n = a034868_tabf !! n %o A034868 a034868_tabf = map reverse a034869_tabf %o A034868 -- _Reinhard Zumkeller_, improved Dec 20 2015, Jul 27 2012 %o A034868 (PARI) for(n=0, 14, for(k=0, floor(n/2), print1(binomial(n, k),", ");); print();) \\ _Indranil Ghosh_, Mar 31 2017 %o A034868 (Python) %o A034868 import math %o A034868 from sympy import binomial %o A034868 for n in range(15): %o A034868 print([binomial(n, k) for k in range(int(math.floor(n/2)) + 1)]) # _Indranil Ghosh_, Mar 31 2017 %o A034868 (Python) %o A034868 from itertools import count, islice %o A034868 def A034868_gen(): # generator of terms %o A034868 yield from (s:=(1,)) %o A034868 for i in count(0): %o A034868 yield from (s:=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ())) %o A034868 A034868_list = list(islice(A034868_gen(),30)) # _Chai Wah Wu_, Oct 17 2023 %Y A034868 Cf. A007318, A107430, A062344, A122366, A027306 (row sums). %Y A034868 Cf. A008619. %Y A034868 Cf. A225860. %Y A034868 Cf. A126257. %Y A034868 Cf. A034869 (right half), A014413, A014462, A265848. %K A034868 nonn,tabf,easy %O A034868 0,4 %A A034868 _N. J. A. Sloane_