This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034877 #27 Jul 08 2025 21:28:16 %S A034877 1,1,1,2,2,2,2,4,4,2,3,6,10,6,3,3,9,16,16,9,3,4,12,28,32,28,12,4,4,16, %T A034877 40,60,60,40,16,4,5,20,60,100,126,100,60,20,5,5,25,80,160,226,226,160, %U A034877 80,25,5,6,30,110,240,396,452,396,240,110,30,6,6,36,140,350,636,848 %N A034877 Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0). %C A034877 Same as A034852, but omitting the border of 0's. %D A034877 S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. %H A034877 Reinhard Zumkeller, <a href="/A034877/b034877.txt">Rows n=0..25 of triangle, flattened</a> %H A034877 Johann Cigler, <a href="https://arxiv.org/abs/1711.03340">Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle</a>, arXiv:1711.03340 [math.CO], 2017. %H A034877 Johann Cigler, <a href="https://homepage.univie.ac.at/johann.cigler/preprints/losanitsch3.pdf">Some Pascal-like triangles</a>, 2018. %H A034877 S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy) %H A034877 N. J. A. Sloane, <a href="/classic.html#LOSS">Classic Sequences</a> %H A034877 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lozani%C4%87%27s_triangle">Losanitsch's triangle</a> %e A034877 Triangle begins: %e A034877 1; %e A034877 1, 1; %e A034877 2, 2, 2; %e A034877 2, 4, 4, 2; %e A034877 3, 6, 10, 6, 3; %e A034877 3, 9, 16, 16, 9, 3; %e A034877 ... %o A034877 (Haskell) %o A034877 a034877 n k = a034877_tabl !! n !! k %o A034877 a034877_row n = a034877_tabl !! n %o A034877 a034877_tabl = map (init . tail) $ drop 2 a034852_tabl %o A034877 -- _Reinhard Zumkeller_, Dec 16 2013 %Y A034877 Cf. A007318, A034851, A034852. %Y A034877 Row sums are essentially A032085. Central column is A032095. %K A034877 nonn,tabl,easy %O A034877 0,4 %A A034877 _N. J. A. Sloane_ %E A034877 More terms from _James Sellers_, May 04 2000