A034942 Binomial transform of A002054.
1, 6, 32, 163, 813, 4013, 19703, 96477, 471811, 2306316, 11274066, 55128021, 269688723, 1320047550, 6465047880, 31682288305, 155354522955, 762235643450, 3742013092520, 18380748447345, 90334417334095, 444186621323945, 2185193308168959, 10755153057295603, 52958560495897573
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
Programs
-
Mathematica
Table[Sum[Binomial[n,k]*Binomial[2*k+3,k],{k,0,n}],{n,0,25}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*binomial(2*k+3,k)); \\ Joerg Arndt, May 04 2013
Formula
Recurrence: (n+3)*(3*n+1)*a(n) = 3*(6*n^2+15*n+11)*a(n-1) - 5*(n-1)*(3*n+4)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 4*5^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 08 2012