cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034952 Expansion of eta(16z)^4*eta(4z)^2.

This page as a plain text file.
%I A034952 #16 Jul 08 2025 21:28:50
%S A034952 1,-2,-1,2,-3,10,2,-8,-4,-14,7,4,18,-2,-13,14,1,14,-21,-4,-35,-14,28,
%T A034952 -6,7,38,39,-30,20,-36,-14,0,17,4,-49,14,-15,-22,-16,66,-39,-10,21,42,
%U A034952 69,82,-18,-80,-28,-50,28,-70,-35,14,66,-56,41,-32,8,52,-77,42,3,36,60
%N A034952 Expansion of eta(16z)^4*eta(4z)^2.
%C A034952 Apparently this is the convolution square of A255252. - _R. J. Mathar_, Feb 22 2021
%H A034952 Johann Cigler, <a href="https://homepage.univie.ac.at/johann.cigler/preprints/losanitsch3.pdf">Some Pascal-like triangles</a>, 2018.
%H A034952 Ono and Skinner, <a href="https://doi.org/10.2307/121015">Fourier coefficients of half-integral weight modular forms modulo l</a>, Ann. Math., 147 (1998), 453-470.
%e A034952 q^3-2*q^7-1*q^11+2*q^15-3*q^19+...
%p A034952 nmax := 30;
%p A034952 eta := product(1-q^i,i=1..nmax) ; # eta=A010815
%p A034952 g := subs(q=q^4,eta)^4*eta^2 ;
%p A034952 g := taylor(g,q=0,nmax+1) ;
%p A034952 seq( coeftayl(g,q=0,i),i=0..nmax) ; # _R. J. Mathar_, Feb 22 2021
%Y A034952 Cf. A010815.
%K A034952 sign,easy
%O A034952 0,2
%A A034952 _N. J. A. Sloane_
%E A034952 More terms from _James Sellers_, Feb 09 2000