cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034956 Divide natural numbers in groups with prime(n) elements and add together.

This page as a plain text file.
%I A034956 #35 Apr 25 2024 09:09:36
%S A034956 3,12,40,98,253,455,850,1292,2047,3335,4495,6623,8938,11180,14335,
%T A034956 18815,24249,28731,35845,42884,49348,59408,69139,81791,98164,112211,
%U A034956 124939,141026,155434,173681,210439,233966,263040,286062,328098,355152,393442,434558,472777
%N A034956 Divide natural numbers in groups with prime(n) elements and add together.
%C A034956 Natural numbers starting from 1,2,3,4,...
%H A034956 Hieronymus Fischer, <a href="/A034956/b034956.txt">Table of n, a(n) for n = 1..1000</a>
%F A034956 From _Hieronymus Fischer_, Sep 27 2012: (Start)
%F A034956 a(n) = Sum_{k=A007504(n-1)+1..A007504(n)} k, n > 1.
%F A034956 a(n) = (A007504(n) - A007504(n-1))*(A007504(n) + A007504(n-1) + 1)/2, n > 1.
%F A034956 a(n) = (A000217(A007504(n)) - A000217(A007504(n-1))), n > 0.
%F A034956 If we define A007504(0) := 0, then the formulas above are also true for n=1.
%F A034956 a(n) = (A034960(n) + A000040(n))/2.
%F A034956 a(n) = A034957(n) + A000040(n). (End)
%e A034956 {1,2} #2 S=3;
%e A034956 {3,4,5} #3 S=12;
%e A034956 {6,7,8,9,10} #5 S=40;
%e A034956 {11,12,13,14,15,16,17} #7 S=98.
%p A034956 s:= proc(n) s(n):= `if`(n<1, 0, s(n-1)+ithprime(n)) end:
%p A034956 a:= n-> (t-> t(s(n))-t(s(n-1)))(i-> i*(i+1)/2):
%p A034956 seq(a(n), n=1..40);  # _Alois P. Heinz_, Mar 22 2023
%t A034956 Module[{nn=50,pr},pr=Prime[Range[nn]];Total/@TakeList[Range[ Total[ pr]], pr]](* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Oct 01 2017 *)
%o A034956 (Python)
%o A034956 from itertools import islice
%o A034956 from sympy import nextprime
%o A034956 def A034956_gen(): # generator of terms
%o A034956     a, p = 0, 2
%o A034956     while True:
%o A034956         yield p*((a<<1)+p+1)>>1
%o A034956         a, p = a+p, nextprime(p)
%o A034956 A034956_list = list(islice(A034956_gen(),20)) # _Chai Wah Wu_, Mar 22 2023
%Y A034956 Cf. A006003, A027441, A034957.
%Y A034956 Cf. A046992, A034958, A034959, A034960.
%Y A034956 Cf. A000040, A000217, A007504.
%K A034956 nonn
%O A034956 1,1
%A A034956 _Patrick De Geest_, Oct 15 1998