cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034958 Divide primes into groups with prime(n) elements and add together.

This page as a plain text file.
%I A034958 #35 Feb 08 2019 02:33:53
%S A034958 5,23,101,311,931,1895,3875,6349,10643,18335,25873,39593,55607,71301,
%T A034958 94559,127315,167495,204063,258283,315087,369749,451635,533015,640097,
%U A034958 779283,902789,1013795,1159073,1295871,1457935,1786691,2002645,2272221
%N A034958 Divide primes into groups with prime(n) elements and add together.
%H A034958 Hieronymus Fischer, <a href="/A034958/b034958.txt">Table of n, a(n) for n = 1..1000</a>
%F A034958 From _Hieronymus Fischer_, Sep 26 2012: (Start)
%F A034958 a(n) = Sum_{k=A007504(n-1)+1..A007504(n)} A000040(k), n > 1.
%F A034958 a(n) = A007504(A007504(n)) - A007504(A007504(n-1)), n > 1.
%F A034958 If we define A007504(0) := 0, then the formulas are also true for n = 1.
%F A034958 (End)
%e A034958 a(1) = 5 because the first 2 primes are 2 and 3 and 2 + 3 = 5.
%e A034958 a(2) = 23 because the next 3 primes are 5, 7, 11, and they add up to 23.
%e A034958 a(3) = 101 because the next 5 primes are 13, 17, 19, 23, 29 which add up to 101.
%e A034958 a(4) = 311 because the next 7 primes are 31, 37, 41, 43, 47, 53, 59 and they add up to 311.
%t A034958 Join[{5},Total[Prime[Range[#[[1]]+1,#[[2]]]]]&/@Partition[ Accumulate[ Prime[ Range[40]]],2,1]] (* _Harvey P. Dale_, Oct 03 2013 *)
%t A034958 Module[{nn=33},Total/@TakeList[Prime[Range[Total[Prime[Range[nn]]]]], Prime[ Range[ nn]]]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Mar 16 2018 *)
%t A034958 s = 0; Total[Table[s = s + 1; Prime[s], {j, 33}, {n, Prime[j]}], {2}] (* _Horst H. Manninger_, Jan 17 2019 *)
%o A034958 (PARI) s(n) = sum(k=1, n, prime(k)); \\ A007504
%o A034958 a(n) = s(s(n)) - s(s(n-1)); \\ _Michel Marcus_, Oct 12 2018
%Y A034958 Cf. A006003, A027441, A034956.
%Y A034958 Cf. A007504, A046992, A034959, A034960, A180302.
%K A034958 nonn
%O A034958 1,1
%A A034958 _Patrick De Geest_, Oct 15 1998