This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034959 #22 Mar 22 2023 21:59:47 %S A034959 2,18,70,182,484,884,1666,2546,4048,6612,8928,13172,17794,22274,28576, %T A034959 37524,48380,57340,71556,85626,98550,118658,138112,163404,196134, %U A034959 224220,249672,281838,310650,347136,420624,467670,525806,571846,655898 %N A034959 Divide even numbers into groups with prime(n) elements and add together. %H A034959 Hieronymus Fischer, <a href="/A034959/b034959.txt">Table of n, a(n) for n = 1..10000</a> %F A034959 From _Hieronymus Fischer_, Sep 27 2012: (Start) %F A034959 a(n) = 2*Sum_{k=(A007504(n-1)+1)..A007504(n)} (k-1), n > 1. %F A034959 a(n) = (A007504(n) - A007504(n-1))*(A007504(n) + A007504(n-1) - 1), n > 1. %F A034959 a(n) = 2*(A000217(A007504(n) - 1) - A000217(A007504(n-1) - 1)), n > 1. %F A034959 If we define A007504(0):=0, then the formulas above are also true for n=1. %F A034959 a(n) = 2*A034957(n). %F A034959 a(n) = A034960(n) - A000040(n). %F A034959 (End) %e A034959 {0,2} #2 S=2; %e A034959 {4,6,8} #3 S=18; %e A034959 {10,12,14,16,18} #5 S=70; %e A034959 {20,22,24,26,28,30,32} #7 S=182. %o A034959 (Python) %o A034959 from itertools import islice %o A034959 from sympy import nextprime %o A034959 def A034959_gen(): # generator of terms %o A034959 a, p = 0, 2 %o A034959 while True: %o A034959 yield p*((a<<1)+p-1) %o A034959 a, p = a+p, nextprime(p) %o A034959 A034959_list = list(islice(A034959_gen(),20)) # _Chai Wah Wu_, Mar 22 2023 %Y A034959 Cf. A006003, A027441, A034960. %Y A034959 Cf. A046992, A034956-A034958. %K A034959 nonn %O A034959 1,1 %A A034959 _Patrick De Geest_, Oct 15 1998