cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034972 a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or "Zag" number (see A000182).

This page as a plain text file.
%I A034972 #17 May 12 2018 12:52:27
%S A034972 2,8,17,29,44,63,85,110,138,170,205,243,284,329,376,427,482,539,600,
%T A034972 664,731,802,876,953,1033,1116,1203,1293,1386,1483,1583,1685,1792,
%U A034972 1901,2014,2130,2249,2371,2497,2626,2758,2893,3032,3174,3319,3467,3619,3774
%N A034972 a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or "Zag" number (see A000182).
%D A034972 J. Peters and J. Stein, Matematische Tafeln. Revised Russian Edition in 1968, Moscow, Table 9a.
%H A034972 Michael De Vlieger, <a href="/A034972/b034972.txt">Table of n, a(n) for n = 1..5000</a>
%F A034972 a(n) = floor( T(n+1)/T(n) ) where T(n) is n-th coefficient in expansion of tan(x).
%e A034972 a(5) = floor(T(6)/T(5)) = floor(353792/7936) = floor(44.58) = 44.
%t A034972 Map[Floor[#2/#1] & @@ # &, Partition[Table[If[n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]], {n, 49}], 2, 1]] (* _Michael De Vlieger_, Jul 31 2017, after _Michael Somos_ at A000182 *)
%Y A034972 Cf. A000182.
%K A034972 nonn,easy
%O A034972 1,1
%A A034972 _Labos Elemer_