A034997 Number of generalized retarded functions in quantum field theory.
2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930, 1955230985997140
Offset: 1
Examples
a(1)=2 because the point x=0 splits the real line into two parts, the positive and negative reals. a(2)=6 because we can split two-dimensional space into 6 parts using lines x=0, y=0 and x+y=0.
References
- Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and Algebra. Springer International Publishing, 2015. 157-171.
- M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.
Links
- Louis J. Billera, Sara C. Billey, and Vasu Tewari, Boolean product polynomials and Schur-positivity, arXiv:1806.02943 [math.CO], 2018.
- L. J. Billera, J. Tatch Moore, C. Dufort Moraites, Y. Wang, and K. Williams, Maximal unbalanced families, arXiv preprint arXiv:1209.2309 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 26 2012
- Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
- Antoine Deza, Mingfei Hao, and Lionel Pournin, Sizing the White Whale, arXiv:2205.13309 [math.CO], 2022.
- Antoine Deza, George Manoussakis, and Shmuel Onn, Primitive Zonotopes, Discrete & Computational Geometry, 2017, p. 1-13. (See p. 5.)
- Nick Early, Lukas Kühne, and Leonid Monin, When alcoved polytopes add, arXiv:2501.17249 [math.CO], 2025. See p. 7.
- Tim S. Evans, N-point finite temperature expectation values at real times, Nuclear Physics B 374 (1992) 340-370.
- Tim S. Evans, What is being calculated with Thermal Field Theory?, arXiv:hep-ph/9404262, 1994-2011 and in "Particle Physics and Cosmology: Proceedings of the Ninth Lake Louise Winter School", World Scientific, 1995 (ISBN 9810221002).
- Samuel C. Gutekunst, Karola Mészáros, and T. Kyle Petersen, Root Cones and the Resonance Arrangement, arXiv:1903.06595 [math.CO], 2019.
- Lukas Kühne, The Universality of the Resonance Arrangement and its Betti Numbers, arXiv:2008.10553 [math.CO], 2020.
- Hidehiko Kamiya, Akimichi Takemura, and Hiroaki Terao, Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47 (2011) 379-400.
- Lars Kastner and Marta Panizzut, Hyperplane arrangements in polymake, arXiv:2003.13548 [math.CO], 2020.
- Zhengwei Liu, William Norledge, and Adrian Ocneanu, The adjoint braid arrangement as a combinatorial Lie algebra via the Steinmann relations, arXiv:1901.03243 [math.CO], 2019.
- William Norledge and Adrian Ocneanu, Hopf monoids, permutohedral tangent cones, and generalized retarded functions, arXiv:1911.11736 [math.CO], 2019.
Extensions
a(9) from Zachary Chroman, Feb 19 2021
Comments