This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035051 #38 Feb 03 2025 09:48:03 %S A035051 0,1,2,12,116,1555,26682,558215,13781448,392209380,12641850510, %T A035051 455198725025,18109373455164,788854833679549,37343190699472322, %U A035051 1908871649888004240,104789417805394595600,6148562290130009617619 %N A035051 Number of labeled rooted connected graphs where every block is a complete graph. %C A035051 Equivalently, rooted labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater). %D A035051 Warren D. Smith and David Warme, Paper in preparation, 2002. %H A035051 T. D. Noe, <a href="/A035051/b035051.txt">Table of n, a(n) for n=0..100</a> %H A035051 Roland Bacher, <a href="https://arxiv.org/abs/1102.2708">On the enumeration of labelled hypertrees and of labelled bipartite trees</a>, arXiv:1102.2708 [math.CO], 2011. %H A035051 Maryam Bahrani and Jérémie Lumbroso, <a href="http://arxiv.org/abs/1608.01465">Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition</a>, arXiv:1608.01465, 2016. %H A035051 I. M. Gessel and L. H. Kalikow, <a href="http://arXiv.org/abs/math.CO/0410373">Hypergraphs and a functional equation...</a> %H A035051 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=864">Encyclopedia of Combinatorial Structures 864</a> %H A035051 D. M. Warme, <a href="http://www.citeulike.org/user/veer/article/1236677">Spanning Trees in Hypergraphs with Applications to Steiner Trees</a>. PhD thesis, University of Virginia, 1998. %F A035051 Recurrence: a(1) = 1, a(n) = Sum_{k=1}^{n-1} Bell(k) / k! Sum_{a_j > 0, Sum_{j=1}^k a_j = n-1} {{n-1} choose {a_1, a_2, ..., a_k }} \prod_{j=1}^k a(a_j) for n > 1, where Bell(k) = A000110(k). - Warren D. Smith, Feb 23 1998 %F A035051 a(n) = Sum_{i=0...n-1} S(n-1, i) n^i, where S(N, M) are Stirling numbers of the second kind - David Warme, Mar 25 1998 %F A035051 E.g.f. satisfies A(x)=x*exp(exp(A(x))-1). %F A035051 Let X_{mu} be a Poisson random variable with mean mu: P(X_{mu} = K) = e^{-mu} mu^K / K!. The n-th moment of X_{mu} is E[X_{mu}^n] = sum_{i=0}^n S(n, i) mu^i. Therefore a(n) = E[X_n^{n-1}]. - Langworth Withers, May 25 2000 %F A035051 Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^k*k^(n-1)/k!. Cf. A030019 and A052888. For a refinement of this sequence see A210586. - _Peter Bala_, Apr 05 2012 %F A035051 a(n) ~ exp((1/LambertW(1)-2)*n) * n^(n-1) / (sqrt(1+LambertW(1)) * LambertW(1)^(n-1)). - _Vaclav Kotesovec_, Jan 22 2014 %t A035051 f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* _Robert G. Wilson v_, Apr 05 2012 *) %t A035051 Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* _Emanuele Munarini_, May 23 2014 *) %o A035051 (Maxima) a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n); %o A035051 makelist(a(n),n,0,12); /* _Emanuele Munarini_, May 23 2014 */ %o A035051 (PARI) for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ _G. C. Greubel_, Nov 17 2017 %Y A035051 Cf. A007549, A007563, A030019, A038052, A038053, A030438. A052888, A210586. %K A035051 nonn,eigen,nice %O A035051 0,3 %A A035051 _Christian G. Bower_, Oct 15 1998