This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035055 #23 Nov 15 2014 17:51:32 %S A035055 1,1,1,2,3,6,12,24,49,105,231,517,1188,2783,6643,16101,39606,98605, %T A035055 248287,631214,1618878,4183964,10889305,28517954,75111521,198851386, %U A035055 528929895,1412993746,3789733399,10201625514,27555373561,74664487653,202908119046,552939614498 %N A035055 Number of forests of different trees. %H A035055 Alois P. Heinz, <a href="/A035055/b035055.txt">Table of n, a(n) for n = 0..1000</a> %H A035055 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A035055 Weigh transform of A000055. %F A035055 a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148175..., c = 0.89246007934060351292465521837... . - _Vaclav Kotesovec_, Aug 25 2014 %p A035055 with(numtheory): %p A035055 b:= proc(n) option remember; `if`(n<2, n, %p A035055 (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) %p A035055 end: %p A035055 h:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)*b(n-k), %p A035055 k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2) %p A035055 end: %p A035055 g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A035055 add(binomial(h(i), j)*g(n-i*j, i-1), j=0..n/i))) %p A035055 end: %p A035055 a:= n-> g(n, n): %p A035055 seq(a(n), n=0..40); # _Alois P. Heinz_, May 19 2013 %t A035055 nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; %t A035055 b = Flatten[ %t A035055 sol = SolveAlways[ %t A035055 0 == Series[ %t A035055 t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}], %t A035055 x]; Table[a[n], {n, 0, nn}] /. sol]; %t A035055 r[x_] := Sum[b[[n]] x^(n - 1), {n, 1, nn + 1}]; c = %t A035055 Drop[CoefficientList[ %t A035055 Series[r[x] - (r[x]^2/2 - r[x^2]/2), {x, 0, nn}], x], %t A035055 1]; CoefficientList[ %t A035055 Series[Product[(1 + x^i)^c[[i]], {i, 1, nn}], {x, 0, nn}], x] (* _Geoffrey Critzer_, Nov 15 2014 *) %Y A035055 Cf. A005195. %K A035055 nonn %O A035055 0,4 %A A035055 _Christian G. Bower_, Oct 15 1998