This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035083 #9 Aug 31 2018 15:58:17 %S A035083 0,0,0,1,1,2,3,7,14,33,74,180,438,1090,2741,6994,17966,46565,121440, %T A035083 318597,839953,2224486,5914248,15780662,42241422,113402369,305254039, %U A035083 823690961,2227640597,6037142355,16392945284,44592703836 %N A035083 DIK(b)-DIK[ 2 ](b)-b where b is A035082. %H A035083 Andrew Howroyd, <a href="/A035083/b035083.txt">Table of n, a(n) for n = 0..500</a> %H A035083 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %o A035083 (PARI) %o A035083 BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2} %o A035083 DIK(p,n)={(sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))) + ((1+p)^2/(1-subst(p, x, x^2))-1)/2)/2} %o A035083 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A035083 seq(n)={my(p=O(x)); for(n=1, n, p=x+x^2*Ser(EulerT(Vec(BIK(p)-1)-Vec(p)))); Vec(DIK(p, n) - p - (p^2 + subst(p, x, x^2))/2, -(n+1))} \\ _Andrew Howroyd_, Aug 31 2018 %Y A035083 Cf. A035082, A035084, A035085. %K A035083 nonn %O A035083 0,6 %A A035083 _Christian G. Bower_, Nov 15 1998