This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035089 #43 Jun 21 2023 12:06:55 %S A035089 2,3,5,17,17,97,193,257,257,7681,12289,12289,12289,40961,65537,65537, %T A035089 65537,786433,786433,5767169,7340033,23068673,104857601,167772161, %U A035089 167772161,167772161,469762049,2013265921,3221225473,3221225473,3221225473,75161927681 %N A035089 Smallest prime of form 2^n*k + 1. %C A035089 a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order 2^n. - _Joerg Arndt_, Oct 18 2020 %H A035089 Alois P. Heinz, <a href="/A035089/b035089.txt">Table of n, a(n) for n = 0..1000</a> %H A035089 Gareth A. Jones and Alexander K. Zvonkin, <a href="https://www.labri.fr/perso/zvonkin/Research/ProjPrimesShort.pdf">Groups of prime degree and the Bateman-Horn conjecture</a>, 2021. %t A035089 a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* _Artur Jasinski_ *) %o A035089 (PARI) a(n)=for(k=1,9e99,if(ispseudoprime(k<<n+1),return(k<<n+1))) \\ _Charles R Greathouse IV_, Jul 06 2011 %Y A035089 Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215. %Y A035089 Cf. A007522, A057775, A127575, A127576, A127577, A127578, A127580, A127581, A087522, A127586, A127587. %K A035089 nonn %O A035089 0,1 %A A035089 _Labos Elemer_ %E A035089 a(0) from _Joerg Arndt_, Jul 06 2011