This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035094 #18 Oct 18 2020 22:35:16 %S A035094 2,3,7,73,241,2161,15121,161281,1088641,10886401,39916801,958003201, %T A035094 18681062401,1133317785601,9153720576001,83691159552001, %U A035094 1778437140480001,12804747411456001,851515702861824001,41359334139002880001,766364132575641600001,20232013099996938240001 %N A035094 Smallest prime of form (n!)*k + 1. %C A035094 This is one possible generalization of "the least prime problem in special arithmetic progressions" when n in nk+1 is replaced by n!. %C A035094 a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order n!. - _Joerg Arndt_, Oct 18 2020 %H A035094 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %e A035094 a(5)=241 because in arithmetic progression 120k+1=5!k+1 the second term is prime, 241. %t A035094 sp[n_]:=Module[{nf=n!,k=1},While[!PrimeQ[nf*k+1],k++];nf*k+1]; Array[sp,20] (* _Harvey P. Dale_, Jan 27 2013 *) %o A035094 (PARI) a(n) = for(k=1, oo, if(isprime(k*n! + 1), return(k*n! + 1))); \\ _Daniel Suteu_, Oct 18 2020 %Y A035094 Analogous case is A034694. Special case for k=1 is A002981. %Y A035094 Cf. A035093 (values of k). %K A035094 nonn %O A035094 1,1 %A A035094 _Labos Elemer_