This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035116 #52 May 03 2025 22:25:07 %S A035116 1,4,4,9,4,16,4,16,9,16,4,36,4,16,16,25,4,36,4,36,16,16,4,64,9,16,16, %T A035116 36,4,64,4,36,16,16,16,81,4,16,16,64,4,64,4,36,36,16,4,100,9,36,16,36, %U A035116 4,64,16,64,16,16,4,144,4,16 %N A035116 a(n) = tau(n)^2, where tau(n) = A000005(n). %D A035116 G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 59. %D A035116 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 304. %H A035116 T. D. Noe, <a href="/A035116/b035116.txt">Table of n, a(n) for n = 1..1000</a> %H A035116 Mircea Merca, <a href="https://www.researchgate.net/publication/312324402">The Lambert series factorization theorem</a>, The Ramanujan Journal, January 2017; DOI: 10.1007/s11139-016-9856-3. %F A035116 Dirichlet g.f.: zeta(s)^4/zeta(2s). %F A035116 tau(n)^2 = Sum_{d|n} tau(d^2), Dirichlet convolution of A048691 and A000012 (i.e.: inverse Mobius transform of A048691). %F A035116 Multiplicative with a(p^e) = (e+1)^2. - _Vladeta Jovovic_, Dec 03 2001 %F A035116 G.f.: Sum_{n>=1} A000005(n^2)*x^n/(1-x^n). - _Mircea Merca_, Feb 25 2014 %F A035116 a(n) = A066446(n) + A184389(n). - _Reinhard Zumkeller_, Sep 08 2015 %F A035116 Let b(n), n > 0, be the Dirichlet inverse of a(n). Then b(n) is multiplicative with b(p^e) = (-1)^e*(Sum_{i=0..e} binomial(3,i)) for prime p and e >= 0, where binomial(n,k)=0 if n < k; abs(b(n)) is multiplicative and has the Dirichlet g.f.: (zeta(s))^4/(zeta(2*s))^3. - _Werner Schulte_, Feb 07 2021 %p A035116 A035116 := proc(n) numtheory[tau](n)^2 ; end proc: %p A035116 seq(A035116(n),n=1..40) ; # _R. J. Mathar_, Apr 02 2011 %t A035116 DivisorSigma[0, Range[100]]^2 (* _Vladimir Joseph Stephan Orlovsky_, Jul 20 2011 *) %o A035116 (Magma) [ NumberOfDivisors(n)^2 : n in [1..100] ]; %o A035116 (PARI) A035116(n)=numdiv(n)^2; %o A035116 (Haskell) %o A035116 a035116 = (^ 2) . a000005' -- _Reinhard Zumkeller_, Sep 08 2015 %Y A035116 Cf. A000005, A048691, A061391. %Y A035116 Cf. A066446, A184389, A061502. %K A035116 nonn,easy,mult %O A035116 1,2 %A A035116 _N. J. A. Sloane_ %E A035116 Additional comments from _Vladeta Jovovic_, Apr 29 2001