A035119 Related to A045720 and A035101.
0, 0, 1, 18, 285, 4680, 82845, 1595790, 33453945, 760970700, 18705542625, 494764058250, 14023390706325, 424278354099600, 13653335491921125, 465794724725079750, 16796514560465264625, 638448710154151396500
Offset: 1
Examples
a(4)=18 for the number of forests (sets) of three increasing labeled rooted trees with 4 non-root vertices and three root labels 0: [(0,4),{(0,1),(0,2)},(0,3)]; [(0,4),{(0,2),(0,1)},(0,3)]; [(0,4),{(0,1),(0,3)},(0,2)]; [(0,4),{(0,3),(0,1)},(0,2)]; [(0,4),{(0,2),(0,3)},(0,1)]; [(0,4),{(0,3),(0,2)},(0,1)]; [(0,4),(0,1,2),(0,3)]; [(0,4),(0,1,3),(0,2)]; [(0,4),(0,2,3),(0,1)]; [{(0,4),(0,1)},(0,2),(0,3)]; [{(0,1),(0,4)},(0,2),(0,3)]; [{(0,4),(0,2)},(0,1),(0,3)]; [{(0,2),(0,4)},(0,1),(0,3)]; [{(0,4),(0,3)},(0,1),(0,2)]; [{(0,3),(0,4)},(0,1),(0,2)]; [(0,1,4),(0,2),(0,3)]; [(0,2,4),(0,1),(0,3)]; [(0,3,4),(0,1),(0,2)]. a(4)=18 increasing ternary 3-forest with n=4 vertices: there are three 3-forests (two one vertex trees together with any of the three different 2-vertex trees) each with six increasing labelings. W. Lang, Sep 14 2007.
Comments