This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035127 #22 Feb 16 2025 08:32:37 %S A035127 1,4,9,144,196,625,11664,14884,46656,96100,1493284,4112784,6385729, %T A035127 9253764,139287204,149377284,187799616,618268225,634284225,678758809, %U A035127 929884036,14938217284,43325589904,61076696769,97482577284 %N A035127 Squares which when digits are rotated left once remain square. %C A035127 Those resulting in leading zeros are excluded. %H A035127 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a> %e A035127 2527^2 = 6385729 -> 3857296 = 1964^2. %t A035127 okQ[n_]:=Module[{idn=IntegerDigits[n]},idn[[2]]!=0&&IntegerQ[Sqrt[ FromDigits[RotateLeft[idn]]]]]; Join[{1,4,9},Select[Range[4,320000]^2, okQ]] (* _Harvey P. Dale_, Apr 30 2011 *) %o A035127 (Python) %o A035127 from itertools import count, islice %o A035127 from sympy.solvers.diophantine.diophantine import diop_DN %o A035127 def A035127_gen(): # generator of terms %o A035127 for l in count(0): %o A035127 l1, l2 = 10**(l+1), 10**l %o A035127 yield from sorted(set(y**2 for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2)) %o A035127 A035127_list = list(islice(A035127_gen(),20)) # _Chai Wah Wu_, Apr 23 2022 %Y A035127 Subsequence of A000290. %Y A035127 Cf. A045878, A035131. %K A035127 nonn,base %O A035127 1,2 %A A035127 _Patrick De Geest_, Nov 15 1998