This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035140 #25 Jun 30 2023 16:57:14 %S A035140 25,32,121,125,128,132,135,143,175,187,243,250,256,295,312,324,341, %T A035140 351,375,432,451,512,625,671,679,735,781,875,928,932,1023,1024,1053, %U A035140 1057,1207,1243,1250,1255,1324,1325,1328,1331,1352,1359,1372,1375,1377,1379 %N A035140 Digits of juxtaposition of prime factors of composite n appear also in n. %H A035140 Michael S. Branicky, <a href="/A035140/b035140.txt">Table of n, a(n) for n = 1..10000</a> %e A035140 295 = 5 * 59 since {5,9} is a subset of {2,5,9}. %t A035140 id[n_]:=Complement[Range[0,9],IntegerDigits[n]]; fac[n_]:=Flatten[IntegerDigits[Take[FactorInteger[n],All,1]]]; t={}; Do[If[!PrimeQ[n] && Intersection[id[n],fac[n]] == {}, AppendTo[t,n]], {n,2,1380}]; t (* _Jayanta Basu_, May 01 2013 *) %t A035140 Select[Range@10000, CompositeQ@# && SubsetQ[IntegerDigits@#,Flatten@IntegerDigits@(#[[1]] & /@ FactorInteger@#)] &] (* _Hans Rudolf Widmer_, May 11 2023 *) %o A035140 (Python) %o A035140 from sympy import factorint, isprime %o A035140 def ok(n): return n > 1 and not isprime(n) and set("".join(str(p) for p in factorint(n))) <= set(str(n)) %o A035140 print([k for k in range(1380) if ok(k)]) # _Michael S. Branicky_, May 11 2023 %Y A035140 Cf. A035139, A035141. %K A035140 nonn,base %O A035140 1,1 %A A035140 _Patrick De Geest_, Nov 15 1998 %E A035140 Name clarified by _Hans Rudolf Widmer_, May 11 2023