cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035155 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -35.

This page as a plain text file.
%I A035155 #11 Nov 17 2023 11:21:30
%S A035155 1,0,2,1,1,0,1,0,3,0,2,2,2,0,2,1,2,0,0,1,2,0,0,0,1,0,4,1,2,0,0,0,4,0,
%T A035155 1,3,0,0,4,0,0,0,0,2,3,0,2,2,1,0,4,2,0,0,2,0,0,0,0,2,0,0,3,1,2,0,0,2,
%U A035155 0,0,2,0,2,0,2,0,2,0,2,1,5
%N A035155 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -35.
%H A035155 G. C. Greubel, <a href="/A035155/b035155.txt">Table of n, a(n) for n = 1..10000</a>
%F A035155 From _Amiram Eldar_, Nov 17 2023: (Start)
%F A035155 a(n) = Sum_{d|n} Kronecker(-35, d).
%F A035155 Multiplicative with a(p^e) = 1 if Kronecker(-35, p) = 0 (p = 5 or 7), a(p^e) = (1+(-1)^e)/2 if Kronecker(-35, p) = -1 (p is in A191068), and a(p^e) = e+1 if Kronecker(-35, p) = 1 (p is in A191026).
%F A035155 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(35) = 1.06205215... . (End)
%t A035155 a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-35, #] &]];
%t A035155 Table[a[n], {n, 1, 100}] (* _G. C. Greubel_, Apr 25 2018 *)
%o A035155 (PARI) my(m=-35); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
%o A035155 (PARI) a(n) = sumdiv(n, d, kronecker(-35, d)); \\ _Amiram Eldar_, Nov 17 2023
%Y A035155 Cf. A191026, A191068.
%K A035155 nonn,easy,mult
%O A035155 1,3
%A A035155 _N. J. A. Sloane_