This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035173 #16 Nov 17 2023 16:52:27 %S A035173 1,2,2,3,0,4,2,4,3,0,2,6,2,4,0,5,1,6,0,0,4,4,2,8,1,4,4,6,0,0,2,6,4,2, %T A035173 0,9,0,0,4,0,0,8,0,6,0,4,0,10,3,2,2,6,2,8,0,8,0,0,0,0,0,4,6,7,0,8,0,3, %U A035173 4,0,2,12,0,0,2,0,4,8,2,0,5 %N A035173 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -17. %H A035173 G. C. Greubel, <a href="/A035173/b035173.txt">Table of n, a(n) for n = 1..10000</a> %F A035173 From _Amiram Eldar_, Nov 17 2023: (Start) %F A035173 a(n) = Sum_{d|n} Kronecker(-17, d). %F A035173 Multiplicative with a(17^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-17, p) = -1 (p is in A296930), and a(p^e) = e+1 if Kronecker(-17, p) = 1. %F A035173 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/sqrt(17) = 3.047792... . (End) %t A035173 a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-17, #] &]]; Table[a[n], {n, 1, 100}] (* _G. C. Greubel_, Jul 17 2018 *) %o A035173 (PARI) my(m = -17); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)) %o A035173 (PARI) a(n) = sumdiv(n, d, kronecker(-17, d)); \\ _Amiram Eldar_, Nov 17 2023 %Y A035173 Cf. A296930. %K A035173 nonn,easy,mult %O A035173 1,2 %A A035173 _N. J. A. Sloane_