This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035188 #18 Nov 20 2023 11:53:08 %S A035188 1,1,1,1,2,1,0,1,1,2,0,1,0,0,2,1,0,1,2,2,0,0,2,1,3,0,1,0,2,2,0,1,0,0, %T A035188 0,1,0,2,0,2,0,0,2,0,2,2,2,1,1,3,0,0,2,1,0,0,2,2,0,2,0,0,0,1,0,0,2,0, %U A035188 2,0,2,1,2,0,3,2,0,0,0,2,1 %N A035188 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 6. %C A035188 Coefficients of Dedekind zeta function for the quadratic number field of discriminant 24. See A002324 for formula and Maple code. - _N. J. A. Sloane_, Mar 22 2022 %H A035188 G. C. Greubel, <a href="/A035188/b035188.txt">Table of n, a(n) for n = 1..10000</a> %F A035188 From _Amiram Eldar_, Oct 17 2022: (Start) %F A035188 a(n) = Sum_{d|n} Kronecker(6, d). %F A035188 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(5+2*sqrt(6)) / sqrt(6) = 0.935881... . (End) %F A035188 Multiplicative with a(p^e) = 1 if Kronecker(6, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(6, p) = -1 (p is in A038877), and a(p^e) = e+1 if Kronecker(6, p) = 1 (p is in A097934). - _Amiram Eldar_, Nov 20 2023 %t A035188 a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[6, #] &]]; Table[ a[n], {n, 1, 100}] (* _G. C. Greubel_, Apr 27 2018 *) %o A035188 (PARI) my(m=6); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)) %o A035188 (PARI) a(n) = sumdiv(n, d, kronecker(6, d)); \\ _Amiram Eldar_, Nov 20 2023 %Y A035188 Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively. %Y A035188 Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively. %Y A035188 Cf. A038877, A097934. %K A035188 nonn,easy,mult %O A035188 1,5 %A A035188 _N. J. A. Sloane_