This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035198 #16 Jul 08 2025 21:31:23 %S A035198 1,9,17,25,41,73,81,89,97,113,121,137,153,169,193,225,233,241,257,281, %T A035198 289,313,337,353,361,369,401,409,425,433,449,457,521,569,577,593,601, %U A035198 617,625,641,657,673,697,729,761,769,801,809,841,857,873,881,929,937 %N A035198 From a Dirichlet series. %C A035198 Contribution from _R. J. Mathar_, Jul 16 2010: (Start) %C A035198 The Dirichlet function is (z_1(s))^2*z_3(2*s)*z_5(2*s) = 1+ 2/9^s+4/17^s+2/25^s+4/41^s+.., %C A035198 where z_1(s) = prod_{p in A007519} Zeta(s,p) = 1+2/17^s+2/41^s+2/73^s+ ...(see A004625), %C A035198 z_3(s) = prod_{p in A007520} Zeta(s,p) = 1+2/3^s+2/9^s+2/11^s+2/19^s+2/27^s+4/33^s+.., %C A035198 z_5(s) = prod_{p in A007521} Zeta(s,p) = 1+2/5^s+2/13^s+...+4/65^s+2/101^s+..., Zeta(s,p)=(1+p^(-s))/(1-p^(-s)). (End) %H A035198 P. A. B. Pleasants, M. Baake, J. Roth, <a href="http://dx.doi.org/10.1063/1.531424">Planar coincidences for N-fold symmetry</a> J. Math. Phys. 37 (1996) 1029. %K A035198 nonn,easy %O A035198 0,2 %A A035198 _N. J. A. Sloane_ %E A035198 More terms from _R. J. Mathar_, Jul 16 2010 %E A035198 More terms from _Sean A. Irvine_, Sep 29 2020