This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A035202 #25 Nov 19 2023 01:27:26 %S A035202 1,1,0,1,1,0,0,1,1,1,2,0,0,0,0,1,0,1,2,1,0,2,0,0,1,0,0,0,2,0,2,1,0,0, %T A035202 0,1,0,2,0,1,2,0,0,2,1,0,0,0,1,1,0,0,0,0,2,0,0,2,2,0,2,2,0,1,0,0,0,0, %U A035202 0,0,2,1,0,0,0,2,0,0,2,1,1,2,0,0,0,0,0,2,2,1,0,0,0,0,2,0,0,1,2,1,2,0,0,0,0 %N A035202 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20. %C A035202 Also number of divisors of n which end in 1 or 9 minus number of divisors of n which end in 3 or 7. E.g. a(98)=2-1=1 since divisors of 98 are: 1 and 49 counting +1 each; 2, 14 and 98 counting 0 each; and 7 counting -1. - _Henry Bottomley_, Jul 08 2003 %H A035202 Amiram Eldar, <a href="/A035202/b035202.txt">Table of n, a(n) for n = 1..10000</a> %H A035202 MathNerds, <a href="https://web.archive.org/web/20130123081526/http://www.mathnerds.com/best/DivisorExcess/index.aspx">An Excess of Divisors</a>. [Wayback Machine link] %F A035202 From _Amiram Eldar_, Nov 19 2023: (Start) %F A035202 a(n) = Sum_{d|n} Kronecker(20, d). %F A035202 Multiplicative with a(p^e) = 1 if Kronecker(20, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(20, p) = -1 (p is in A003631 \ {2}), and a(p^e) = e+1 if Kronecker(20, p) = 1 (p is in A045468). %F A035202 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(phi)/sqrt(5) = 0.645613411446..., where phi is the golden ratio (A001622). (End) %p A035202 a:= proc(n) local D,d; D:= map(`modp`,convert(numtheory:-divisors(n),list),10); %p A035202 numboccur(1,D) + numboccur(9,D) - numboccur(3,D) - numboccur(7,D); %p A035202 end proc: %p A035202 seq(a(n),n=1..1000); # _Robert Israel_, Sep 22 2014 %t A035202 a[n_] := With[{d = Mod[Divisors[n], 10]}, Count[d, 1|9] - Count[d, 3|7]]; %t A035202 Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, May 15 2023 *) %t A035202 a[n_] := DivisorSum[n, KroneckerSymbol[20, #] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2023 *) %o A035202 (PARI) my(m = 20); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)) %o A035202 (PARI) a(n) = sumdiv(n, d, kronecker(20, d)); \\ _Amiram Eldar_, Nov 19 2023 %Y A035202 Cf. A083911, A083913, A083917, A083919. %Y A035202 Cf. A001622, A003631, A045468. %K A035202 nonn,easy,mult %O A035202 1,11 %A A035202 _N. J. A. Sloane_ %E A035202 More terms from _Henry Bottomley_, Jul 08 2003