cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035206 Number of multisets associated with least integer of each prime signature.

This page as a plain text file.
%I A035206 #33 Sep 25 2024 09:48:16
%S A035206 1,1,2,1,3,6,1,4,12,6,12,1,5,20,20,30,30,20,1,6,30,30,15,60,120,20,60,
%T A035206 90,30,1,7,42,42,42,105,210,105,105,140,420,140,105,210,42,1,8,56,56,
%U A035206 56,28,168,336,336,168,168,280,840,420,840,70,280,1120,560,168,420,56,1,9,72
%N A035206 Number of multisets associated with least integer of each prime signature.
%C A035206 a(n,k) multiplied by A036038(n,k) yields A049009(n,k).
%C A035206 a(n,k) enumerates distributions of n identical objects (balls) into m of altogether n distinguishable boxes. The k-th partition of n, taken in the Abramowitz-Stegun (A-St) order, specifies the occupation of the m =m(n,k)= A036043(n,k) boxes. m = m(n,k) is the number of parts of the k-th partition of n. For the A-St ordering see pp.831-2 of the reference given in A117506. - _Wolfdieter Lang_, Nov 13 2007
%C A035206 The sequence of row lengths is p(n)= A000041(n) (partition numbers).
%C A035206 For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
%C A035206 The corresponding triangle with summed row entries which belong to partitions of the same number of parts k is A103371. [_Wolfdieter Lang_, Jul 11 2012]
%H A035206 Andrew Howroyd, <a href="/A035206/b035206.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H A035206 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A035206 Wolfdieter Lang, <a href="/A035206/a035206.pdf">First 10 rows and more.</a>
%F A035206 a(n,k) = A048996(n,k)*binomial(n,m(n,k)),n>=1, k=1,...,p(n) and m(n,k):=A036043(n,k) gives the number of parts of the k-th partition of n.
%e A035206 n\k 1  2  3  4   5   6   7   8   9  10  11  12  13 14 15
%e A035206 0   1
%e A035206 1   1
%e A035206 2   2  1
%e A035206 3   3  6  1
%e A035206 4   4 12  6 12   1
%e A035206 5   5 20 20 30  30  20   1
%e A035206 6   6 30 30 15  60 120  20  60  90  30   1
%e A035206 7   7 42 42 42 105 210 105 105 140 420 140 105 210 42  1
%e A035206 ...
%e A035206 Row No. 8:  8  56 56 56 28 168 336 336 168 168 280  840 420 840 70 280 1120 560 168 420 56 1
%e A035206 Row No. 9: 9 72 72 72 72 252 504 504 252 252 504 84 504 1512 1512 1512 1512 504 630 2520 1260 3780 630 504 2520 1680 252 756 72 1
%e A035206 [rewritten and extended table by _Wolfdieter Lang_, Jul 11 2012]
%e A035206 a(5,5) relates to the partition (1,2^2) of n=5. Here m=3 and 5 indistinguishable (identical) balls are put into boxes b1,...,b5 with m=3 boxes occupied; one with one ball and two with two balls.
%e A035206 Therefore a(5,5) = binomial(5,3)*3!/(1!*2!) = 10*3 = 30. _Wolfdieter Lang_, Nov 13 2007
%o A035206 (PARI)
%o A035206 C(sig)={my(S=Set(sig)); binomial(vecsum(sig), #sig)*(#sig)!/prod(k=1, #S, (#select(t->t==S[k], sig))!)}
%o A035206 Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
%o A035206 { for(n=0, 7, print(Row(n))) } \\ _Andrew Howroyd_, Oct 18 2020
%Y A035206 Cf. A036038, A048996, A049009.
%Y A035206 Cf. A001700 (row sums).
%Y A035206 Cf. A103371(n-1, m-1) (triangle obtained after summing in every row the numbers with like part numbers m).
%K A035206 nonn,tabf,easy
%O A035206 0,3
%A A035206 _Alford Arnold_
%E A035206 More terms from _Joshua Zucker_, Jul 27 2006
%E A035206 a(0)=1 prepended by _Andrew Howroyd_, Oct 18 2020