cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035215 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 33); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)