cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035233 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.

This page as a plain text file.
%I A035233 #22 Jul 30 2020 12:24:02
%S A035233 1,4,9,11,13,16,17,23,25,31,36,41,43,44,47,49,52,53,59,64,67,68,79,81,
%T A035233 83,92,97,99,100,101,103,107,109,117,121,124,127,139,143,144,153,164,
%U A035233 167,169,172,173,176,181,187,188,193,196,197,207,208,212,221,225
%N A035233 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.
%C A035233 Also, positive numbers of the form x^2 + xy + 11y^2 (discriminant -43).
%H A035233 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%o A035233 (PARI) m=-43; select(x -> x, direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)), 1) \\ Fixed by _Andrey Zabolotskiy_, Jul 30 2020
%Y A035233 Cf. A106891 (Primes of the form x^2 + xy + 11y^2).
%Y A035233 Cf. A035147, A031363, A035256.
%K A035233 nonn
%O A035233 1,2
%A A035233 _N. J. A. Sloane_
%E A035233 More terms from _Colin Barker_, Jun 19 2014