A141178 Primes of the form 3*x^2+x*y-3*y^2 (as well as of the form 3*x^2+7*x*y+y^2).
3, 7, 11, 37, 41, 47, 53, 67, 71, 73, 83, 101, 107, 127, 137, 139, 149, 151, 157, 173, 181, 197, 211, 223, 229, 233, 263, 269, 271, 293, 307, 317, 337, 349, 359, 367, 373, 379, 397, 419, 433, 443, 491, 509, 521, 571, 593, 599, 601, 613, 617, 619, 641, 659, 673
Offset: 1
Keywords
Examples
a(3) = 11 because we can write 11 = 3*2^2+2*1-3*1^2 (or 11 = 3*1^2+7*1*1+1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer-Verlag Berlin Heidelberg, 1981.
Crossrefs
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
Primes in A035267.
A subsequence of (and may possibly coincide with) A038913. - R. J. Mathar, Jul 22 2008
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Mathematica
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[FindInstance[p == 3*x^2 + x*y - 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* or: *) Select[Prime[Range[200]], # == 37 || MatchQ[Mod[#, 37], Alternatives[1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36]]&](* Jean-François Alcover, Oct 25 2016, updated Oct 30 2016 *)
Comments